

Markt Irsee

Landkreis Ostallgäu

Antrag auf die gehobene wasserrechtliche Erlaubnis nach § 15 WHG

für die

Einleitung von behandeltem Abwasser aus der Kläranlage Irsee in den Irseer Bach

ERLÄUTERUNG

vornabenstrager:	aurgestellt:
Irsee, den	Neusäß, 01.07.2025 Projekt-Nr. 123132 SSTE/MFRA/mfra
(Stempel, Unterschrift)	Steinbacher-Consult Ingenieurgesellschaft mbH & Co. KG Richard-Wagner-Straße 6 86356 Neusäß

INHALTSVERZEICHNIS

1.	Vorhabensträger	6
2.	Zweck des Vorhabens	6
3.	Bestehende Verhältnisse	6
	3.1 Allgemeines	6
	3.2 Gemeindestruktur	7
	3.3 Bestehende Wasserversorgung	7
	3.4 Bestehende Abwasseranlagen	7
	3.6 Einwohner	8
	3.6.1 Derzeitige Einwohnerzahlen	8
	3.6.2 Prognose	9
	3.7 Trinkwasserverbrauch	9
	3.8 Abwassermengen	10
	3.9 Baugebiete	. 11
	3.10 Gewerbe	. 11
	3.11 Belastung der Kläranlage	. 11
	3.12 Bestehende Kläranlage	.12
	3.12.1 Derzeitiges Wasserrecht	.12
	3.12.2 Übersicht bestehende Anlage	.13
	3.12.3 Mechanische Vorreinigung	13
	3.12.4 Kombibecken	.14
	3.12.5 Gebläsestation	.15
	3.12.6 Schlammpumpwerk	.16
	3.12.7 Chemische Phosphorelimination	.16
	3.12.8 Schlammbehandlung	. 17
	3.12.9 Betriebsgebäude	. 17
	3.13 Betriebsverhältnisse der bestehenden Kläranlage	.18
	3.13.1 Auswertung Betriebstagebuch	.18
	3.13.2 Auswertung nach ATV-DVWK-A-198	18
	3.13.3 Abwassermengen	18

		3.13.4	1 Zulauffrachten	21
		3.13.5	5 Ablaufkonzentration	28
		3.13.6	Fremdwasser	32
		3.13.7	7 Rechengutanfall, Sandanfall	32
	3.14	4 Messp	orogramm 2024	33
	3.15	5 Gewä	sserverhältnisse	35
4.	Art	und U	mfang des Vorhabens	35
	4.1	Gewä	hlte Lösung	35
	4.2	Kanal	isation	35
	4.3	Klärar	nlage	36
		4.3.1	Kläranlagenstandort	36
		4.3.2	Einleitanforderungen	36
		4.3.3	Verfahrensführung	36
		4.3.4	Betrachtete Lastfälle	37
	4.4	Beme	ssungswerte	38
		4.4.1	Lastfall: Ist-Belastung	38
		4.4.2	Lastfall: Prognose-Belastung	39
	4.5	Überr	echnung Biologie, IST-Belastung 2.770 EW	40
		4.5.1	Belebung und Nachklärung	40
		4.5.2	Belüftung und Gebläsestation	41
	4.6	Überr	echnung Biologie, Prognose-Belastung 3.000 EW	43
		4.6.1	Belebung und Nachklärung	43
		4.6.2	Belüftung und Gebläsestation	44
	4.7	Schla	mmbehandlung	46
		4.7.1	Übersicht und rechnerische Abschätzung	46
		4.7.2	Schlammentsorgung	46
	4.8	Bewei	rtung	47
	4.9	Hydra	ulische Überrechnung	47
5.	Aus	swirkuı	ng des Vorhabens	48
	5.1	Einleit	tung aus der Kanalisation	48
	5.2	Einleit	tung aus der Kläranlage	48
	5.3	Prüfur	ng hinsichtlich UVP-Pflicht	48

6.	Rechtsverhältnisse	49
7.	Wartung und Verwaltung der Anlage	50
8.	Schlussbemerkung	51

ABBILDUNGS- UND TABELLENVERZEICHNIS

Abbildung 1: Einwohnerzahlen (Bayerisches Landesamt für Statistik und Datenverarbeitung)	8
Abbildung 2: Auswertung Tagesdurchfluss	19
Abbildung 3: Ablaufkonzentration BSB5	29
Abbildung 4: Ablaufkonzentration CSB	29
Abbildung 5: Ablaufkonzentration NH4-N	30
Abbildung 6: Ablaufkonzentration Nges	30
Abbildung 7: Ablaufkonzentration Pges	31
Abbildung 8: Auswertung Messprogramm 2024 (CSB)	33
Taballa 1. Einwahnerzahlen Einzugegehiet der Klärenlage (Quelle, Merkt Iroce)	0
Tabelle 1: Einwohnerzahlen Einzugsgebiet der Kläranlage (Quelle: Markt Irsee)	
Tabelle 2: Abgerechnete Trinkwassermengen (2018-2022)	
Tabelle 3: Trinkwasserverbrauch pro Einwohner (2018-2022)	
Tabelle 4: Abwasseranfall (2018-2022)	
Tabelle 5: Baugebiete Markt Irsee	
Tabelle 6: Ist-Belastung der Kläranlage	
Tabelle 7: Abwasserdurchflussmengen 2019-2023 (bis einschl. Juli)	
Tabelle 8: Jahresschmutzwassermenge und Jahresabwassermenge	
Tabelle 9: Zulaufkonzentrationen, alle Tage	
Tabelle 10: Zulaufkonzentrationen, Wetter 1+2 Tabelle 11: Zulauffrachten, alle Tage	
Tabelle 12: Zulauffrachten, Wetter 1+2	
Tabelle 13: Zulaumachten, wetter 1+2	
Tabelle 14: Zulaufbelastung EW, Wetter 1+2	
Tabelle 15: Auswertung Ablaufkonzentrationen, alle Tage	
Tabelle 16: Fremdwasser BTB 2019-2022	
Tabelle 17: Rechengut und Sandanfall 2017-2023 (bis einschl. Juli)	
Tabelle 18: Auswertung Messprogramm 2024	
Tabelle 19: Auswertung Zulaufverhältnisse Messprogramm	
Tabelle 20: Einleitanforderungen	
Tabelle 21: Bemessungsfrachten IST-Belastung	
Tabelle 22: Bemessungsfrachten Prognose-Belastung	
Tabelle 23: Überrechnung Biologie, IST-Belastung, resultierende Kennwerte	
Tabelle 24: Überrechnung Nachklärung, IST-Belastung, resultierende Kennwerte	
Tabelle 25: Bemessung Belüftung IST-Belastung	
Tabelle 26: Überrechnung Biologie, Prognose-Belastung, resultierende Kennwerte	
Tabelle 27: Überrechnung Nachklärung, Prognose-Belastung, resultierende Kennwerte	
Tabelle 28: Bemessung Belüftung Prognose-Belastung	
Tabelle 29: Schlammbilanz	

1. Vorhabensträger

Vorhabensträger der Maßnahme ist zur Erneuerung auf gehobene Wasserrechtliche Erlaubnis nach §15 WHG für die Einleitung von behandeltem Abwasser aus der Kläranlage in den Irseer Bach ist der Markt Irsee

Markt Irsee Meinrad-Spieß-Platz 1 87660 Irsee

vertreten durch den 1. Bürgermeister Andreas Lieb

2. Zweck des Vorhabens

Der Markt Irsee, betreibt die Kläranlage Irsee zur Reinigung der im Einzugsgebiet anfallenden kommunalen und gewerblichen Abwässer. Die vorhandene Anlage befindet sich auf Fl.-Nr. 259/55 Gemarkung Irsee. Das gereinigte Abwasser wird in den Irseer Bach eingeleitet.

Die derzeit gültige wasserrechtliche Erlaubnis, Az. 41-641/1.1 vom 07.02.2005, ist bis zum 31.12.2025 befristet.

Mit vorliegender Unterlage beantragt der Markt Irsee die Verlängerung der bestehenden bzw. die Erteilung einer neuen wasserrechtlichen Erlaubnis als gehobene Erlaubnis nach §15 WHG zur Einleitung von nach dem Stand der Technik behandeltem Abwasser aus der Kläranlage Irsee in den Irseer Bach.

3. Bestehende Verhältnisse

3.1 Allgemeines

Der Markt Irsee liegt ca. 5 km nordwestlich der Stadt Kaufbeuren und ca. 2 km westlich und oberhalb des Wertachtals. Es bestehen gute Straßenverbindungen zu überregionalen Verkehrswegen B12, B16 und über diese Bundesstraßen zur Autobahn A96 München-Lindau.

3.2 Gemeindestruktur

Der Markt Irsee hat nach der Einwohnerauswertung von 2022 eine Einwohnerzahl von 1.614 Einwohnern (inkl. aller Ortsteile).

Der Markt Irsee besteht hauptsächlich aus Wohngebieten. Die Wohngebiete sind durch mitteldichte Siedlungsstrukturen geprägt.

In den kommenden 20 Jahren ist bezüglich der Einwohnerzahl mit einem leichten Zuwachs zu rechnen. (Kapitel 3.6.2).

3.3 Bestehende Wasserversorgung

Der Markt Irsee sowie die an die Kläranlage angeschlossenen Ortsteile werden durch eine eigene Anlage zur Trinkwasserversorgung versorgt.

Der Anschlussgrad an die öffentliche Wasserversorgung lag für das gesamte Gemeindegebiet im Jahr 2019 bei 90,8%¹.

Für das Jahr 2022 wurde eine Frischwasserbezug von 126.271 m³/a für das gesamte Gemeindegebiet ermittelt und 90.203 m³/a allein für den Markt Irsee.

3.4 Bestehende Abwasseranlagen

Das Einzugsgebiet der Kläranlage Irsee umfasst nur den Markt Irsee, weitere Ortsteile sind nicht an der Kläranlage angeschlossen.

Die Abwasseranlage besteht im Wesentlichen aus einem Kanalnetz im Mischverfahren mit Regenüberlaufbecken, mit einem Trennsystem aus dem Gebiet Maxau und einer mechanisch-biologischen Kläranlage mit weitergehender Reinigung.

Das Wasserrecht für Einleitungen aus der Mischwasser- sowie Regenwasserkanalisation ist nicht Bestandteil dieser Unterlage.

Die **Kläranlage Irsee** ist ausgelegt auf eine BSB_5 – Fracht (roh) von 150 kg/d (entspricht 2.500 EW_{60}) und eine maximale Zulaufmenge von 40 l/s. Die Anlage wird als mechanischbiologische Abwasserreinigung mit chemischer Phosphorelimination betrieben. Der Ablauf wird in den Irseer Bach eingeleitet.

¹ Statistik Kommunal, Markt Irsee 09 777 139; März 2023; Bayerisches Landesamt für Statistik.

3.6 Einwohner

3.6.1 Derzeitige Einwohnerzahlen

Einwohnerzahlen liegen für die vergangenen Jahre aus dem Datenbestand des Bayerischen Landesamtes für Statistik und Datenverarbeitung vor. Abbildung 1 zeigt die Entwicklung der vergangenen Jahre. Erkennbar ist ein leichter Anstieg im Zeitraum von 1987 bis heute. In den letzten 10 Jahren war ein Einwohnerzuwachs von etwa 8 % zu verzeichnen (vgl. Tabelle 1).



Abbildung 1: Einwohnerzahlen (Bayerisches Landesamt für Statistik und Datenverarbeitung)

An die Kläranlage angeschlossen ist nur der Markt Irsee.

Die Einwohnerzahlen im Einzugsgebiet der Kläranlage können folgender Tabelle entnommen werden.

Tabelle 1: Einwohnerzahlen Einzugsgebiet der Kläranlage (Quelle: Markt Irsee)

	Einwohnerzahlen				
Ortsteil	2022	2021	2020	2019	2018
Irsee	1.527	1.510	1.513	1.509	1.480

An der Kläranlage ist nur der Markt Irsee ohne weitere Ortsteile angeschlossen. Aus den Betriebsberichten der Kläranlage ist die **Anzahl der angeschlossenen Einwohner** (Haupt- und Nebenwohnsitz) wie folgt zu entnehmen:

2019: 1.412 E
 2020: 1.450 E
 2021: 1.450 E
 2022: 1.450 E

Dies deckt sich gut mit den ermittelten Werten aus den uns zur Verfügung gestellten Einwohnerdaten.

3.6.2 Prognose

Für die weitere Bevölkerungsentwicklung ist von einem leichten Wachstum auszugehen. Der Prognose des Bayerischen Landesamtes für Statistik wird entnommen:

Bevölkerung gesamt, Markt Irsee,

... im Jahr 2019: 1.532 Einwohner ... im Jahr 2039: 1.620 Einwohner

Dies entspricht einem Zuwachs von knapp 6% in den nächsten 20 Jahren, der in geeigneter Weise in den Reserven der Anlage zu berücksichtigen ist.

3.7 Trinkwasserverbrauch

In Irsee und den dazugehörigen Ortsteilen wurden in den letzten Jahren folgende Trinkwassermengen an Haushalte verkauft:

Tabelle 2: Abgerechnete Trinkwassermengen (2018-2022)

Trinkwasserverkauf (Haushalte)						
Ortsteil	Ortsteil 2022		2020	2019	2018	
	m³/a	m³/a	m³/a	m³/a	m³/a	
Irsee	90.203	88.777	90.976	79.994	87.961	
Oggenried	19.549	18.737	18.298	26.435	38.735	
Haslach	0	0	0	0	0	
Bickenried	1.245	6.529	1.342	1.343	1.625	
Alm	4.348	4.364	2.804	2.409	2.502	
Eiberg	4.511	4.495	4.506	4.717	5.007	
Wielen	6.415	5.104	5.367	5.349	5.697	
Gesamt	126.271	128.006	123.293	120.247	141.527	

Aus diesen Daten lassen sich folgende Trinkwasserverbräuche ermitteln:

Tabelle 3: Trinkwasserverbrauch pro Einwohner (2018-2022)

Trinkwasserverbrauch	Gesamtes Gemeindegebiet	Markt Irsee
Jahr	I/E*d	I/E*d
2018	240,2	162,8
2019	200,4	145,2
2020	204,2	164,3
2021	213,1	161,1
2022	208,4	161,8
Mittel	213,3	159,1

Der mittlere Trinkwasserbedarf beträgt im gesamten Gemeindegebiet etwa **213 l/E*d** und im Markt Irsee etwa 159 l/E*d.

3.8 Abwassermengen

In der nachfolgenden Tabelle können die abgerechneten Abwassermengen des Markt Irsee und der spezifische Abwasseranfall pro Einwohner entnommen werden.

Tabelle 4: Abwasseranfall (2018-2022)

	Abwassermengen	Abwassermenge pro Einwohner
Jahr	m³/a	l/E*d
2018	74.245	137,4
2019	66.606	120,9
2020	71.511	129,1
2021	69.037	125,3
2022	68.971	123,7
Mittel	70.074	127,3

Der mittlere Abwasseranfall beträgt für den Markt Irsee im Mittel etwa 127,3 l/E*d.

Aufgrund der Unschärfen in der Erhebung zu Trinkwasserbezug und Schmutzwasserabrechnung wird auf der sicheren Seite liegend im Folgenden mit einem Ansatz von

W_{s.d}=135 I/E*d

gerechnet.

3.9 Baugebiete

Der Markt Irsee plant in den nächsten Jahren folgendes Baugebiet:

Tabelle 5: Baugebiete Markt Irsee

Gebietsbezeichnung	Fläche [ha]	geplante Einwohner [E]	Gebietsart	Realisierung
Baugebiet Schlachtbichel West	0,68	16	Wohngebiet	2024/2025

Anderweitige Angaben zu Baugebieten liegen im Rahmen der Bearbeitung nicht vor.

3.10 Gewerbe

Laut Angaben des Markt Irsee sind folgende Gewerbebetriebe, bzw. Großverbraucher, welche in die Kläranlage Irsee einleiten, bekannt. Für die Betriebe liegen keine Messwerte der Konzentrationen oder Frachten vor.

Betrieb	2022	2021	2020	2019	2018
	Jahres-	Jahres-	Jahres-	Jahres-	Jahres-
	menge	menge	menge	menge	menge
	m³/a	m³/a	m³/a	m³/a	m³/a
Bildungszentrum Irsee	5.177	2.853	1.691	5.817	5.524
Bräustüble Hotel	3.760	3.308	2.554	3.744	4.195
Brauerei	2.641	1.845	2.136	1.724	1.799

3.11 Belastung der Kläranlage

In der nachfolgenden Tabelle kann, die derzeit zu Erwartende Belastung der Kläranlage entnommen werden.

Tabelle 6: Ist-Belastung der Kläranlage

	IST-Belastung
Einwohner	1.527
Kleingewerbe (10% der Einwohner)	153
Bildungszentrum	290 ²
Hotel	982
Brauerei	700 ³
Gesamt	2.768

Anhand der jetzigen Belastung und des prognostizierten Einwohnerzuwachses (Siehe Kapitel 3.6.2), und einer Reserve von ca. 4 % wird eine Ausbaugröße von 3.000 EW gewählt.

² Anzahl der Betten.

³ Vertragliches Kontingent.

Markt Irsee –

Antrag auf die gehobene wasserrechtliche Erlaubnis nach § 15 WHG

3.12 Bestehende Kläranlage

3.12.1 Derzeitiges Wasserrecht

Die bestehende Kläranlage Irsee ist ausgelegt auf 2.500 EW60 (Einwohnerwerte). Dies entspricht der Größenklasse 2 nach Anhang 1 der Abwasserverordnung.

Ausbaugröße und Einleitanforderungen nach <u>derzeitiger</u> wasserrechtlicher Erlaubnis vom 07.02.2005 sind:

Ausbaugröße $2.500 \text{ EW}_{60} = 150 \text{ kgBSB}_5/\text{d}$

Größenklasse: GK2

Einleitanforderungen nach Bescheid vom 07.02.2005:

Chemischer Sauerstoffbedarf	CSB	75 mg/l
Biochemischer Sauerstoffbedarf	BSB ₅	15 mg/l
Ammonium-Stickstoff *)	NH_4-N	5 mg/l
Stickstoff gesamt *)	N_{ges}	18 mg/l
Phosphor gesamt	P_{ges}	2 mg/l
Abfiltrierbare Stoffe **)	AFS	20 mg/l

^{*)} im Zeitraum 01.05 und 31.10

In der Zeit vom 01. November bis 30. April ist die Anlage so zu betrieben, dass eine bestmögliche Nitrifikation und Denitrifikation erzielt werden.

Abflusswerte:

Trockenwetterabfluss: $50.4 \text{ m}^3/\text{h} = 14 \text{ l/s}$

700 m³/d

Mischwasserabfluss: $144 \text{ m}^3/\text{h} = 40 \text{ l/s}$

^{**)} von der nicht abgesetzten, homogenisierten qualifizierten Stichprobe bei Trockenwetter Die Werte sind aus der nicht abgesetzten, homogenisierten 2h-Mischprobe einzuhalten.

3.12.2 Übersicht bestehende Anlage

Die Kläranlage Irsee ist mit folgenden wesentlichen Verfahrenskomponenten konzipiert:

- Mechanische Vorreinigung, Kompaktanlage Rechen/Sandfang
- Kombibecken Belebung / Nachklärung
- Schlammpumpwerk
- Gebläsestation

Zur Behandlung des anfallenden Überschussschlammes ist folgendes Verfahren vorhanden:

- Schlammstapelbehälter
- Trübwasserspeicher

Der statisch eingedickte Schlamm wird zur thermischen Verwertung zur Kläranlage Kaufbeuren geliefert.

3.12.3 Mechanische Vorreinigung

Das Abwasser aus den Gemeindeteilen wird über eine Freispiegelleitung der Klaranlage zugeführt. Der Zufluss wird durch eine Drossel im Bereich des RÜB auf 40 I/s begrenzt. Das Abwasser durchströmt einen Schacht und wird von dort im Freispiegel einer Rechenanlage zugeführt. Der Schacht dient als Abzweigbauwerk für die Umgehung der Rechenanlage. Als Umgehungsleitung dient das alte Zulaufgerinne. Der Zufluss zur Rechenanlage kann mittels eines Schiebers verriegelt werden.

Ein Zulaufhebewerk ist nicht notwendig. Das Abwasser durchströmt die Anlage im freien Gefälle.

Das zufließende Abwasser wird mittels einer Rechenanlage mit einer Spaltweite von 3 mm von Grobstoffen befreit. Die Mengenermittlung erfolgt über eine magnetisch-induktive Durchflussmengenmessung in der Ablaufrohrleitung der Rechenanlage.

Der Rechen steht in einem unterirdisch aufgestellten Behältnis, ein eigenes Gerinne ist nicht notwendig. Der Räumvorgang wird durch die Höhe des Einstaus im Behälter vor dem Rechen gesteuert. Das ausgetragene Rechengut wird gewaschen, auf einen Feststoffgehalt von 25 - 30 % gepresst und in einen 1.100 I Standard-Abfallcontainer mit einem Endlossack abgeworfen. Der Endlossack aus Kunststoff dient der Vermeidung von Geruchsemissionen.

Für den Fall einer Störung oder einer planmäßigen Außerbetriebnahme der Rechenanlage ist o.g. Notumgehung vorgesehen.

Markt Irsee -

Antrag auf die gehobene wasserrechtliche Erlaubnis nach § 15 WHG

Im gleichen Behälter ist ein Sand- und Fettfang eingebaut, der das Abwasser von absinkenden und aufschwimmenden Stoffen befreit. Der Sandfang ist belüftet. Der Sandaustrag erfolgt mittels einer horizontalen und einer aufsteigend geneigten Förderschnecke in einen 1.100 I Standard-Abfallcontainer. Die aufschwimmenden Stoffe werden mit einem Räumersystem und einer Austragspumpe in die Rechengutaustrags- und -verdichtungsschnecke eingebracht und zusammen mit dem Rechengut entsorgt.

Kompaktanlage

Fabrikat/Typ: Huber Rotamat Kompaktanlage mit Siebanlage Ro2

Anzahl

Hydr. Durchsatz: max. 40 l/s

3.12.4 Kombibecken

Die biologische Abwasserreinigung ist als Kombibecken mit innenliegender Nachklärung und umlaufendem Belebungsbecken ausgebildet. Das Belebungsbecken ist mit herausnehmbaren Belüftergitter ausgestattet. Die Steuerung der Belüftungszeiten erfolgt über Gebläselaufzeiten, der Sauerstoffeintrag wird über eine Sauerstoffsonde gemessen.

Damit sich der Schlamm in den Pausen (Denitrifikation) der intermittierenden Belüftung nicht absetzt, ist das Belebungsbecken mit einem Tauchmotorrührwerk ausgestattet.

Das Nachklärbecken ist als ein vertikal durchströmtes Rundbecken mit einer gelochten Sammelablaufleitung ausgebildet.

Die Rücklaufschlammpumpe wird in Abhängigkeit von der zulaufenden Wassermenge gesteuert, sie fördert den Schlamm zurück in die Belebung. Eine Überschussschlammpumpe fördert den Schlamm in einen Schlammstapelbehälter. Die beiden Pumpen sind derart verrohrt, dass sie als Redundanz der jeweils anderen Pumpe dienen können.

Gegebenenfalls in der Nachklärung anfallender Schwimmschlamm wird über eine am Bediensteg installierten Pumpe zurück in die Belebung gebracht.

Maßgebende Kenndaten der Belebung:

Volumen: 935 m³

Maßgebende Kenndaten der Nachklärung:

 $\begin{array}{ll} \text{Durchmesser:} & 10,0m \\ \text{H}_{\text{ges}}\text{:} & 10,82m \\ \text{A}_{\text{NB}}\text{:} & 78m^2 \end{array}$

Ausstattung Belebung:

- Rührwerk

Fabrikat: Flygt

TYP: 4410.011-1124

Motor: 2,3 kW
Nenndrehlzahl: 1.375 1/min

<u>Propeller</u>

TYP: 401 "Banana" 211

Drehzahl: 27 1/Min Nenndurchmesser: 2,2m

Membranbelüfter:

Fabrikat: Ott

Schlauch-Typ: FLEXSIL (24 Stück)

Länge: 2,0m

Ausstattung Nachklärung

- Schwimmschlammpumpe

Fabrikat: Flygt

Typ: DVXM 50-15 Freistromlaufrad: Hmax = 10,9mQmax = 550 l/min

3.12.5 Gebläsestation

Für die Belebung stehen insgesamt 2 Verdichter, der Firma Kaeser, zur Verfügung. Die Kenndaten der Verdichter (Baujahr: 2004) lauten wie folgt:

Fabrikat: Kaeser Typ: BB88C

 $V = 4,68 \text{ Nm}^3/\text{min}$ n = 3.980 U/min P = 7,5 kW $\Delta p = 610 \text{ mbar}$

Die Gebläsestation ist im Betriebsgebäude untergebracht.

3.12.6 Schlammpumpwerk

Im Schlammpumpwerk sind für den Rücklauf- und Überschussschlamm 2 Pumpen (Baujahr: 2004) der Firma Flygt installiert. Die Kenndaten lauten wie folgt:

Fabrikat: Flygt

Typ: 3102.090-0595

Anzahl Pumpen: 2 Stück

Bei Betrieb beider Pumpen im Rücklaufschlammbetrieb liegt die Gesamtförderleistung bei etwa 40 l/s. Damit liegt das maximale Rückführverhältnis im Mischwasserfall bei etwa 100%.

3.12.7 Chemische Phosphorelimination

Zur Reduktion des Phosphates ist eine Nachfällung vorgesehen. Die Dosierstelle befindet sich im Ablauf der Belebung.

Das Phosphatfällung erfolgt mittels IBC-Container. Als Fällmittel kommt VTA Biolizer CC 77 zum Einsatz. Es handelt sich um ein Gemisch aus Eisen-II-chlorid und Poly-Aluminium-Hydroxidchlorid.

Die IBC-Container und die Dosierpumpe befinden sich im Betriebsgebäude.

Markt Irsee -

Antrag auf die gehobene wasserrechtliche Erlaubnis nach § 15 WHG

3.12.8 Schlammbehandlung

Der Überschussschlamm wird mittels der Rücklaufschlammpumpen aus der Nachklärung entnommen und in den Schlammstapelbehältern gefördert. Dort wird dieser statisch eingedickt. Das Trübwasser wird in den Trübwasserpumpschacht gefördert und dort mittels einer Pumpe dem Trübwasserspeicher zugeführt. Vor dort wird dieser der Belebung mittels Pumpbetriebs zugeführt.

Ausstattung Schlammstapelbehälter

- Rührwerk

Fabrikat: Flygt

TYP: 4650.490-0315

Motor: 5,5 kW Nenndrehlzahl: 475 1/min

<u>Propeller</u>

Drehzahl: 475 1/Min Durchmesser: 580 mm

Ausstattung Trübwasserpumpschacht

- Tauchmotorpumpe

Fabrikat: Flygt

Typ: 3068.090-6232

Ausstattung Trübwasserspeicher

Tauchmotorpumpe

Fabrikat: Flygt

Typ: 3068.092-0640

3.12.9 Betriebsgebäude

Das Betriebsgebäude beinhaltet folgende Räumlichkeiten

- → Eingangsflur
- → Schaltwarte/Aufenthaltsraum
- → Labor
- → Sanitärbereich
- → Gebläseraum
- → Werkstatt

Die Räumlichkeiten entsprechen den Erfordernissen.

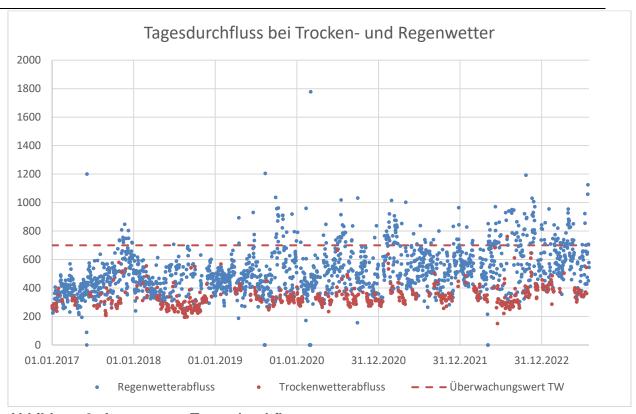
3.13 Betriebsverhältnisse der bestehenden Kläranlage

3.13.1 Auswertung Betriebstagebuch

3.13.2 Auswertung nach ATV-DVWK-A-198

Das Betriebstagebuch von 2019 bis 2023 (bis einschl. Juli) wurde nach ATV-DVWK-A 198 ausgewertet.

Angaben hierzu wurden vom Markt Irsee zur Verfügung gestellt. In den folgenden Kapiteln werden die Ergebnisse dargestellt.


3.13.3 Abwassermengen

Aus der Auswertung des Betriebstagebuches der Jahre 2017 bis 2023 (bis einschl. Juli) ergeben sich maßgebende Abwasserdurchfluss-Mengen entsprechend nachfolgender Tabelle.

Tabelle 7: Abwasserdurchflussmengen 2019-2023 (bis einschl. Juli)

	Tagesd	urchflus	ss						
	Anzahl	MIN	MW	85-%	Max	Summe			
	-	m³/d	m³/d	m³/d	m³/d	m³/a			
Alle Tage									
2017	364,0	89,0	418,2	539,0	1.201,0	152.229			
2018	365,0	196,0	387,5	517,0	707,0	141.428			
2019	362,0	188,0	466,3	591,7	1.205,0	168.789			
2020	360,0	156,0	453,7	606,0	1.778,0	163.674			
2021	365,0	257,0	512,6	682,4	1.015,0	187.386			
2022	364,0	151,0	518,6	723,6	1.193,0	188.104			
2023 (bis einschl. Juli)	212,0	287,0	557,3	717,4	1.125,0				
2017-2023 (bis einschl. Juli)	2.392,0	89,0	468,1	633,0	1.778,0				
	Trockenwetter	tage (Wet	ter 1-2)						
2017	59,0	208,0	317,3	368,2	580,0				
2018	140,0	196,0	294,0	339,2	555,0				
2019	71,0	247,0	339,3	387,0	569,0				
2020	124,0	235,0	326,4	358,0	667,0				
2021	92,0	257,0	352,4	393,8	639,0				
2022	120,0	151,0	353,1	407,5	762,0				
2023 (bis einschl. Juli)	56,0	287,0	384,6	423,8	545,0				
2017-2023 (bis einschl. Juli)	662,0	151,0	333,5	391,7	762,0				

Abbildung 2: Auswertung Tagesdurchfluss

Im Betrachtungszeitraum wurde der vom Bescheid zugelassene Trockenwetterabfluss einmalig am 30.07.2022 mit 762 m³/d überschritten.

Der mittlere jährliche Trockenwetterabfluss liegt laut Betriebstagebuch (2017-07/2023) bei etwa 334 m³/d. Nach Ermittlung des Trockenwetterabfluss nach dem 21d-gleitenden Mittel liegt der mittlere jährliche Trockenwetterabfluss bei 331 m³/d.

Die ermittelten Werte nach dem 21d-gleitenden Mittel stimmen nahezu mit dem Betriebstagebuch überein und können als bestätigt betrachtet werden. Somit liegt der mittlere jährliche Trockenwetterabfluss im IST-Zustand bei:

$$Q_{T,aM} = \frac{334 \, m^3/d}{86,4} = 3,86 \text{ l/s}$$

Dies korreliert auch gut mit den Werten aus der hydraulischen Bemessung. Nach der hydraulischen Bemessung (siehe Anhang 3) liegt der mittlere jährliche Trockenwetterabfluss für den IST- und den Prognosefall bei:

$$Q_{T.am.IST} = 4.1 l/s$$

$$Q_{T,aM,Prognose} = 4.6 l/s$$

Die Jahresschmutzwassermenge, sowie die insgesamt durch die Anlage geführte Jahresabwassermenge liegen mit Schwankungen bei etwa 126.000 m³ bzw. etwa 177.000 m³.

Tabelle 8: Jahresschmutzwassermenge und Jahresabwassermenge

	JSM	JAM
Jahr	m³/a	m³/a
2017	115.829	152.229
2018	107.294	141.428
2019	123.848	168.789
2020	119.449	163.674
2021	128.619	187.386
2022	128.885	188.104

3.13.4 Zulauffrachten

Die im Betriebstagebuch angegebenen Konzentrationen und Frachten wurden entsprechend ATV-DVWK-A 198 ausgewertet und sind in nachfolgenden Tabellen zusammengestellt.

Tabelle 9: Zulaufkonzentrationen, alle Tage

		Zulaufkonzentrationen, alle Tage				
Jahr	Wert	BSB 5	CSB	NH4-N	GesN	P-ges.
		mg/l	mg/l	mg/l	mg/l	mg/l
2017	Min	347	299	166	146	426
	Mittel	1.255	1.063	1.646	1.147	1.319
	85-Perzentil	1.694	1.592	3.030	2.116	2.156
	Max	3.037	2.441	3.342	2.193	2.365
2018	Min	803	565	277	302	377
	Mittel	2.226	2.015	1.843	1.429	1.922
	85-Perzentil	3.265	3.572	2.638	1.827	2.825
	Max	4.058	4.675	2.794	2.292	3.355
2019	Min	505	316	17	266	393
	Mittel	1.892	1.713	1.304	1.049	1.461
	85-Perzentil	4.096	3.288	2.686	1.762	2.254
	Max	4.296	3.389	2.872	1.877	3.748
2020	Min	767	694	666	489	353
	Mittel	1.719	1.904	2.140	1.469	1.624
	85-Perzentil	2.531	2.658	3.441	2.281	2.539
	Max	2.624	5.200	3.651	2.355	3.590
2021	Min	722	802	856	630	802
	Mittel	1.986	1.752	2.843	1.853	1.830
	85-Perzentil	2.736	2.304	4.000	2.660	2.286
	Max	3.592	3.455	4.289	2.825	3.041
2022	Min	313	274	681	78	474
	Mittel	2.368	1.873	2.228	1.354	1.653
	85-Perzentil	3.192	2.659	2.820	1.827	2.227
	Max	5.737	5.589	3.300	2.168	3.726
2023	Min	934	927	1.804	1.245	1.128
(bis einschl. Juli)	Mittel	2.214	2.274	2.513	1.687	2.130
	85-Perzentil	2.819	4.028	2.834	1.943	2.936
	Max	4.024	5.255	4.033	2.646	3.273
2019-2023	Min	313	274	17	78	353
(bis einschl. Juli)	Mittel	2.038	1.873	2.277	1.531	1.740
	85-Perzentil	2.920	2.926	3.353	2.261	2.533
	Max	5.737	5.589	4.289	2.825	3.748

Tabelle 10: Zulaufkonzentrationen, Wetter 1+2

		Zulaufkonzentrationen, Wetter 1+2				
Jahr	Wert	BSB 5	CSB	NH4-N	GesN	P-ges.
		mg/l	mg/l	mg/l	mg/l	mg/l
2017	Min	303	139	18,4	19,1	3,1
	Mittel	303	316	38,0	39,6	6,4
	85-Perzentil	303	440	51,6	54,0	8,6
	Max	303	493	57,5	60,1	9,6
2018	Min	283	515	4,0	21,2	10,2
	Mittel	420	844	50,2	58,8	12,6
	85-Perzentil	492	1261	71,0	73,1	13,1
	Max	500	1455	75,5	77,1	19,8
2019	Min	280	470	36,2	0,0	7,9
	Mittel	600	1189	55,1	38,0	16,4
	85-Perzentil	600	1403	68,2	64,5	22,3
	Max	600	1495	73,9	75,9	24,8
2020	Min	125	218	13,5	14,1	2,3
	Mittel	357	865	52,3	54,1	10,4
	85-Perzentil	487	1191	77,8	79,7	15,2
	Max	500	1748	81,4	82,5	18,1
2021	Min	226	404	46,3	58,5	6,9
	Mittel	311	550	55,1	61,2	8,4
	85-Perzentil	381	695	60,8	63,1	9,8
	Max	423	803	62,6	63,9	10,9
2022	Min	60	105	35,8	36,9	3,9
	Mittel	406	647	52,6	54,6	9,2
	85-Perzentil	491	860	61,1	62,4	11,7
	Max	496	938	61,6	63,6	13,3
2023	Min	185	367	43,4	51,4	6,7
(bis einschl. Juli)		355	767	51,1	55,0	10,1
	85-Perzentil	459	1064	55,1	58,0	13,1
	Max	480	1638	57,0	59,9	15,3
2019-2023	Min	60	105	13,5	0,0	2,3
(bis einschl. Juli)	Mittel	372	750	53,9	55,3	10,3
	85-Perzentil	490	986	66,3	74,5	14,2
	Max	600	1748	81,4	82,5	24,8

Tabelle 11: Zulauffrachten, alle Tage

		Zulauffrachten, alle Tage				
Jahr	Wert	BSB 5	CSB	NH4-N	GesN	P-ges.
		kg/d	kg/d	kg/d	kg/d	kg/d
2017	Min	21	36	1,2	1,6	0,8
	Mittel	75	128	11,5	12,6	2,4
	85-Perzentil	102	191	21,2	23,3	3,9
	Max	182	293	23,4	24,1	4,3
2018	Min	48	68	1,9	3,3	0,7
	Mittel	134	242	12,9	15,7	3,5
	85-Perzentil	196	429	18,5	20,1	5,1
	Max	244	561	19,6	25,2	6,0
2019	Min	30	38	0,1	2,9	0,7
	Mittel	114	206	9,1	11,5	2,6
	85-Perzentil	246	395	18,8	19,4	4,1
	Max	258	407	20,1	20,6	6,7
2020	Min	46	83	4,7	5,4	0,6
	Mittel	103	229	15,0	16,2	2,9
	85-Perzentil	152	319	24,1	25,1	4,6
	Max	157	624	25,6	25,9	6,5
2021	Min	43	96	6,0	6,9	1,4
	Mittel	119	210	19,9	20,4	3,3
	85-Perzentil	164	277	28,0	29,3	4,1
	Max	216	415	30,0	31,1	5,5
2022	Min	19	33	4,8	0,9	0,9
	Mittel	142	225	15,6	14,9	3,0
	85-Perzentil	191	319	19,7	20,1	4,0
	Max	344	671	23,1	23,9	6,7
2023	Min	56	111	12,6	13,7	2,0
(bis einschl. Juli)		133	273	17,6	18,6	3,8
	85-Perzentil	169	483	19,8	21,4	5,3
	Max	241	631	28,2	29,1	5,9
2019-2023	Min	19	33	0,1	0,9	0,6
(bis einschl. Juli)	Mittel	122	225	15,9	16,8	3,1
	85-Perzentil	175	351	23,5	24,9	4,6
	Max	344	671	30,0	31,1	6,7

Tabelle 12: Zulauffrachten, Wetter 1+2

		Zulauffrachten, Wetter 1+2				
Jahr	Wert	BSB 5	CSB	NH4-N	GesN	P-ges.
		kg/d	kg/d	kg/d	kg/d	kg/d
2017	Min	93	44	5,8	6,0	1,0
	Mittel	93	97	11,7	12,2	2,0
	85-Perzentil	93	135	15,8	16,5	2,6
	Max	93	151	17,6	18,4	2,9
2018	Min	67	125	1,9	5,2	2,5
	Mittel	138	255	13,7	17,8	3,7
	85-Perzentil	183	369	19,0	20,7	5,1
	Max	202	530	19,6	25,2	5,1
2019	Min	94	149	14,6	20,6	3,0
	Mittel	242	381	17,3	20,6	5,0
	85-Perzentil	242	399	19,3	20,6	6,2
	Max	242	407	20,1	20,6	6,7
2020	Min	50	145	4,9	5,4	0,6
	Mittel	118	285	17,0	17,6	3,4
	85-Perzentil	155	376	24,1	24,7	4,8
	Max	157	624	25,6	25,9	6,5
2021	Min	79	154	17,7	18,3	2,5
	Mittel	118	203	21,0	20,3	3,1
	85-Perzentil	140	237	22,9	21,7	3,5
	Max	143	251	23,4	22,3	3,5
2022	Min	19	33	11,2	11,5	1,2
	Mittel	135	216	17,1	17,1	3,0
	85-Perzentil	187	310	19,8	20,4	3,9
	Max	197	342	23,1	23,9	4,3
2023	Min	56	111	15,3	15,6	2,0
(bis einschl. Juli)	Mittel	118	273	17,4	18,2	3,5
	85-Perzentil	151	381	19,3	20,2	4,4
	Max	161	631	19,9	20,5	5,9
2019-2023	Min	19	33	4,9	5,4	0,6
(bis einschl. Juli)	Mittel	127	253	18,0	18,6	3,4
	85-Perzentil	161	351	23,2	23,9	4,6
	Max	242	631	25,6	26,7	6,7

Tabelle 13: Zulaufbelastung EW, alle Tage

		Zulaufbelastung EW, alle Tage				
Jahr	Wert	BSB 5	CSB	NH4-N	GesN	P-ges.
		EW60	EW120	EW7,0	EW7,0	EW1,8
2017	Min	347	299	166	229	426
	Mittel	1.255	1.063	1.646	1.802	1.319
	85-Perzentil	1.694	1.592	3.030	3.326	2.156
	Max	3.037	2.441	3.342	3.446	2.365
2018	Min	803	565	277	475	377
	Mittel	2.226	2.015	1.843	2.245	1.922
	85-Perzentil	3.265	3.572	2.638	2.870	2.825
	Max	4.058	4.675	2.794	3.602	3.355
2019	Min	505	316	17	418	393
	Mittel	1.892	1.713	1.304	1.649	1.461
	85-Perzentil	4.096	3.288	2.686	2.769	2.254
	Max	4.296	3.389	2.872	2.949	3.748
2020	Min	767	694	666	769	353
	Mittel	1.719	1.904	2.140	2.309	1.624
	85-Perzentil	2.531	2.658	3.441	3.584	2.539
	Max	2.624	5.200	3.651	3.701	3.590
2021	Min	722	802	856	990	802
	Mittel	1.986	1.752	2.843	2.911	1.830
	85-Perzentil	2.736	2.304	4.000	4.180	2.286
	Max	3.592	3.455	4.289	4.440	3.041
2022	Min	313	274	681	122	474
	Mittel	2.368	1.873	2.228	2.127	1.653
	85-Perzentil	3.192	2.659	2.820	2.871	2.227
	Max	5.737	5.589	3.300	3.407	3.726
2023	Min	934	927	1.804	1.956	1.128
(bis einschl. Juli)	Mittel	2.214	2.274	2.513	2.651	2.130
	85-Perzentil	2.819	4.028	2.834	3.054	2.936
	Max	4.024	5.255	4.033	4.158	3.273
2019-2023	Min	313	274	17	122	353
(bis einschl. Juli)	Mittel	2.038	1.873	2.277	2.406	1.740
	85-Perzentil	2.920	2.926	3.353	3.554	2.533
	Max	5.737	5.589	4.289	4.440	3.748

Tabelle 14: Zulaufbelastung EW, Wetter 1+2

		Zulaufbelastung EW, Wetter 1+2				
Jahr	Wert	BSB 5	CSB	NH4-N	GesN	P-ges.
		EW60	EW120	EW7,0	EW7,0	EW1,8
2017	Min	1.545	366	831	862	544
	Mittel	1.545	812	1.672	1.745	1.088
	85-Perzentil	1.545	1.123	2.261	2.362	1.469
	Max	1.545	1.257	2.514	2.627	1.632
2018	Min	1.108	1.043	277	736	1.377
	Mittel	2.305	2.126	1.954	2.538	2.054
	85-Perzentil	3.056	3.076	2.710	2.960	2.809
	Max	3.370	4.420	2.794	3.602	2.827
2019	Min	1.559	1.238	2.084	2.949	1.668
	Mittel	4.030	3.175	2.478	2.949	2.758
	85-Perzentil	4.030	3.325	2.753	2.949	3.451
	Max	4.030	3.389	2.872	2.949	3.748
2020	Min	840	1.212	694	769	353
	Mittel	1.962	2.378	2.425	2.511	1.914
	85-Perzentil	2.580	3.136	3.440	3.525	2.661
	Max	2.624	5.200	3.651	3.701	3.590
2021	Min	1.315	1.285	2.526	2.616	1.415
	Mittel	1.968	1.693	2.996	2.901	1.749
	85-Perzentil	2.329	1.976	3.274	3.100	1.924
	Max	2.382	2.094	3.340	3.186	1.936
2022	Min	313	274	1.601	1.650	678
	Mittel	2.244	1.797	2.447	2.446	1.673
	85-Perzentil	3.118	2.586	2.827	2.916	2.154
	Max	3.283	2.851	3.300	3.407	2.416
2023	Min	934	927	2.186	2.225	1.128
(bis einschl. Juli)	Mittel	1.971	2.272	2.491	2.607	1.946
	85-Perzentil	2.510	3.172	2.760	2.879	2.419
	Max	2.685	5.255	2.841	2.931	3.273
2019-2023	Min	313	274	694	769	353
(bis einschl. Juli)	Mittel	2.113	2.110	2.570	2.658	1.905
	85-Perzentil	2.678	2.921	3.310	3.407	2.529
	Max	4.030	5.255	3.651	3.817	3.748

Die CSB-Belastung liegt im Betrachtungszeitraum von 2019-2023 bei ca. 2.900EW.

Die BSB5-Belastung liegt im gesamten Betrachtungszeitraum von 2019-2023 bei ca. 2.700 EW.

Ausgehend von CSB liegt die einkommende Fracht ca. 100% über der Einwohnerzahl. Zur Aufklärung der erhöhten Belastung wurde ein Messprogramm durchgeführt (siehe Kapitel 3.14).

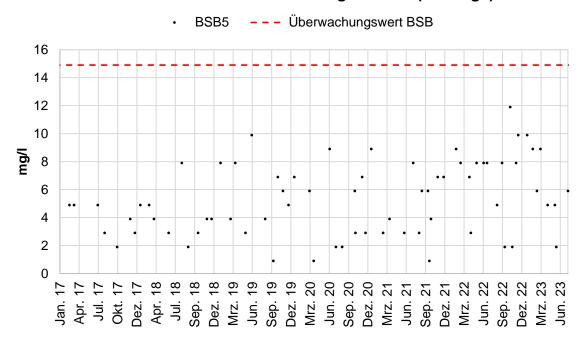
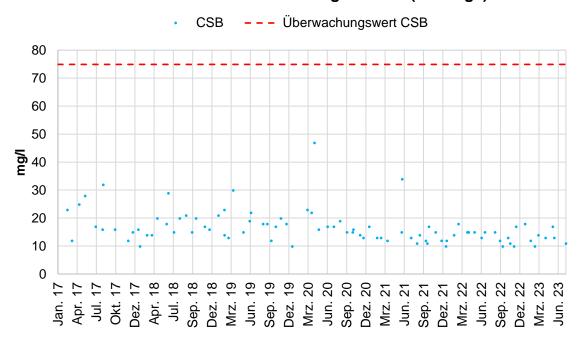

3.13.5 Ablaufkonzentration

Tabelle 15: Auswertung Ablaufkonzentrationen, alle Tage

		BSB5	CSB	NH4-N	Nges	Pges
		mg/l	mg/l	mg/l	mg/l	mg/l
	Anzahl	7	10	10	10	10
	Min	2,0	12,0	0,2	0,1	0,1
2017	Mittel	3,9	19,6	1,6	4,9	0,2
	85-Quantil	5,0	27,0	1,9	9,4	0,1
	Max	5,0	32,0	8,0	11,3	1,3
	- III	0,0	02,0	0,0	, 0	.,0
	Anzahl	9	14	14	14	14
	Min	2,0	10,0	0,1	0,3	0,1
2018	Mittel	4,2	17,5	1,1	6,1	0,4
	85-Quantil	5,0	20,1	2,7	11,1	0,9
	Max	8,0	29,0	4,0	14,2	1,4
	Anzahl	10	14	14	14	14
	Min	1,0	12,0	0,2	0,7	1,3
2019	Mittel	5,6	18,6	1,1	10,5	3,1
	85-Quantil	8,0	22,1	1,4	15,5	4,0
	Max	10,0	30,0	7,3	20,7	7,1
	Anzahl	10	13	13	13	13
	Min	1,0	10,0	1,9	1,9	0,2
2020	Mittel	4,6	18,8	8,1	8,1	2,5
	85-Quantil	7,0	22,2	11,0	11,0	4,2
	Max	9,0	47,0	21,3	21,3	5,7
	Anzahl	12	14	14	14	14
	Min	1,0	11,0	3,3	3,3	0,1
2021	Mittel	5,1	14,9	10,7	10,7	0,5
	85-Quantil	7,4	17,0	17,9	17,9	1,0
	Max	9,0	34,0	20,2	20,2	1,2
	Anzahl	14	16	15	15	16
	Min	2,0	10,0	0,3	0,3	0,2
2022	Mittel	7,0	13,4	5,1	5,1	0,8
	85-Quantil	9,1	15,0	11,0	11,0	1,4
	Max	12,0	18,0	13,0	13,0	1,9
	ļ <u>.</u>		-			
	Anzahl	8	8	8	8	8
2023 (bis	Min	2,0	10,0	0,1	1,4	0,7
einschl.	Mittel	6,5	13,5	0,9	5,0	1,3
Juli)	85-Quantil	9,0	16,9	1,5	8,6	1,6
	Max	10,0	18,0	1,5	10,8	2,1
	A	F 4	0.5	07	0.4	0.5
2019-	Anzahl	54	65	67	64	65
2023 (bis	Min	1,0	10,0	0,0	0,3	0,1
einschl.	Mittel	5,8	15,9	0,8	8,1	1,6
Juli	85-Quantil	9,0	19,0	1,4	13,4	3,1
	Max	12,0	47,0	7,3	21,3	7,1



BSB5-Konzentration im Kläranlagenablauf (alle Tage)

Abbildung 3: Ablaufkonzentration BSB5

CSB-Konzentration im Kläranlagenablauf (alle Tage)

Abbildung 4: Ablaufkonzentration CSB

NH4-N-Konzentration im Kläranlagenablauf (alle Tage)

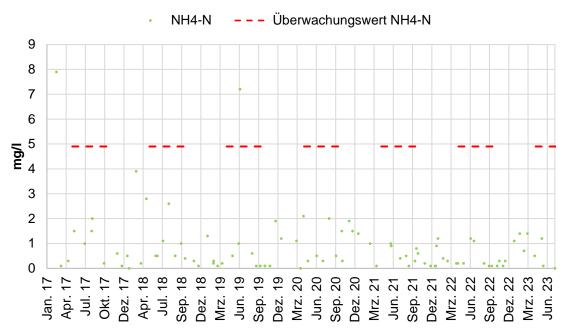
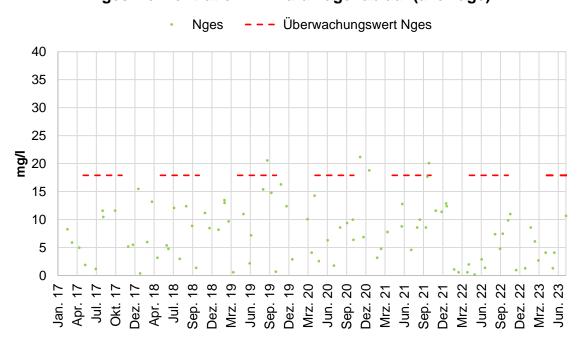



Abbildung 5: Ablaufkonzentration NH4-N

Nges-Konzentration im Kläranlagenablauf (alle Tage)

Abbildung 6: Ablaufkonzentration Nges

Pges-Konzentration im Kläranlagenablauf (alle Tage)

Abbildung 7: Ablaufkonzentration Pges

Der Grenzwert für den biochemischen Sauerstoffbedarf BSB₅ (20 mg/l) sowie der Grenzwert für den chemischen Sauerstoffbedarf (90 mg/l) wurden im gesamten Betrachtungszeitraum nicht überschritten. Auch der erklärte Wert für den chemischen Sauerstoffbedarf (40 mg/l) wurde im gesamten Betrachtungszeitraum nicht überschritten. Im Allgemeinen liegen die Werte deutlich unter den Grenzwerten.

Im Betrachtungszeitraum wurden der Grenzwerte für Nges (18 mg/l) am 18.09.2019 mit einem Wert von 20,7 mg/l und am 12.10.2021 mit einem Wert von 20,2 mg/l überschritten. Während der Zeit von Oktober-Mai wurde der Grenzwert zweimalig im Betrachtungszeitraum überschritten.

Der Grenzwert für Pges von 4,0 mg/l wurde 2019 und 2020 mehrmals überschritten. Zwischenzeitlich wurde eine Dosiereinheit installiert, somit kann bereits der künftige Grenzwert von 2 mg/l zuverlässig eingehalten werden.

Insgesamt können die Überwachungswerte bis auf vereinzelte Überschreitungen bei Nges im Normalbetrieb eingehalten werden.

3.13.6 Fremdwasser

Der ermittelte Fremdwasseranteil der Kläranlage Irsee schwankt in den Betriebstagebüchern zwischen 16 und 20 %.

Tabelle 16: Fremdwasser BTB 2019-2022

Fremdwasser laut BTB					
Jahr	%				
2017	14				
2018	11				
2019	17				
2020	16				
2021	16				
2022	20				
Mittelwert 2020-2022	17				

Aufgrund von üblichen Streuungen und Messunschärfen wird im Folgenden von einem Fremdwasseranteil von maximal 25% ausgegangen.

Eine unzulässige Beeinflussung der Reinigungsleistung durch "Verdünnung" ist somit nicht gegeben.

3.13.7 Rechengutanfall, Sandanfall

Rechengut- und Sandanfall sind im Betriebstagebuch wie folgt verzeichnet:

Tabelle 17: Rechengut und Sandanfall 2017-2023 (bis einschl. Juli)

	Rechengut	Sand
Jahr	m³/a	m³/a
2017	12,8	0
2018	19,7	15
2019	22,4	5
2020	20,4	10
2021	15,1	15
2022	16,4	10
2023 (bis einschließlich Juli)	9,2	8,5

Mit gerundeten Ansätzen ergibt sich:

Spezifischer Rechengutanfall: ca. 11,7 l/E*a
Spezifischer Sandanfall: ca. 48,7 l/1000 m³

Der Rechengut- und Sandanfall liegen in einem üblichen Rahmen.

3.14 Messprogramm 2024

Aufgrund der hohen Belastung der Kläranlage, die sich aus dem Betriebstagebuch ergibt, wurde ein 20-wöchiges Messprogramm (28.02.2024 - 14.07.2024) durchgeführt.

Nachfolgend die Auswertung des Messprogrammes:

Tabelle 18: Auswertung Messprogramm 2024

	Kläranlage Irsee							
	Durchfluss	CSB-	CSB-	CSB-	2-Wochen	4-Wochen		
		Konzentration	Fracht	Belastung	gleitendes	gleitendes		
					Mittel	Mittel		
	m³/d	mg/l	kg/d	EW120	EW120	EW120		
Min	357,00	27,70	18,61	155				
Mittel	614,41	285,91	169,92	1.416				
85%-Perzentil	774,95	491,80	284,28	2.369				
Max	954,00	1.089,67	610,62	5.088	2.910	2.538		

Abbildung 8: Auswertung Messprogramm 2024 (CSB)

Tabelle 19: Auswertung Zulaufverhältnisse Messprogramm

Verhältnisse	IST	SOLL
(Konzentrationen)	(Mittelwert)	(Mittelwert)
BSB5/CSB	0,558	0,5
NH4-N/CSB	0,063	0,064
TKN/CSB	0,123	0,092
Pges/CSB	0,015	0,015

Die Verhältnisse zwischen BSB₅, NH₄-N, TKN und P_{ges} liegen im zu erwartenden Bereich. Und entsprechen der üblichen Zusammensetzung. Das Verhältnis von TKN/CSB liegt leicht über dem SOLL-Wert dies ist auf die geringe Anzahl an Stichproben zurückzuführen, bei der einzelne Ausreißer deutliche Auswirkungen auf den Mittelwert haben.

Aus der Auswertung des Messprogrammes kann man erkennen, dass der 85%-Wert kleiner als das 2-wöchige bzw. 4-wöchige gleitende Mittel ist.

Etwa alle 3-4 Wochen ist eine Spitzenbelastung bei der CSB-Fracht zu erkennen. Die erhöhten Spitzenbelastungen sind auf die Produktionszyklen der Brauerei zurückzuführen. Im Rahmen des Wasserrechtsantrages wurde die Brauerei inspiziert und nach Optimierungspotential gesucht. Die Brauerei ist bestrebt den Zufluss zu vergleichmäßigen, hierfür nutzt die Brauerei einen Lagertank mit etwa 700m³ Tankvolumen. Die Zwischenlagerung des Abflusses im Tank zur Vergleichmäßigung des Abflusses war zum Zeitpunkt des Messprogramms nicht im Betrieb.

Die Brauerei sichert zu den vertraglich vereinbarten Wert (siehe Kapitel 3.6.2) einzuhalten und ist bestrebt den Ablauf mit geeigneten Maßnahmen zu vergleichmäßigen.

Die Zulaufbelastung aus dem Messprogramm entspricht in etwa der Belastung, die nach Kapitel 3.6 zu erwarten ist. Somit liegt die derzeitige Belastung der Kläranlage über der im derzeit gültigen Wasserrechtsbescheid von angegebener Belastung von 2.500 EW.

3.15 Gewässerverhältnisse

Vorfluter für die Kläranlage Irsee ist der Irseer Bach, ein Gewässer dritter Ordnung. Der Bach hat bis zur Einleitstelle der Kläranlage ein Einzugsgebiet von 1,4 km². Die Einleitstelle der Kläranlage in den Irseer Bach befindet sich auf dem Flurstück 310/2 Gemarkung Irsee.

Im Rahmen des Wasserrechtsantrages vom 05.02.2004 wurde der Trockenwetterabfluss MNQ zu 40 l/s bestimmt.

Durch eine am 10.06.2025 durchgeführte Stichtagsmessung, mittels einer manuellen Kübelmessung, konnte eine Abfluss von ca. 45 l/s festgestellt werden (vgl. E-Mail vom 10.06.2025).

4. Art und Umfang des Vorhabens

4.1 Gewählte Lösung

Die vorhandene Kläranlage ist als einstraßige Belebungsanlage, mit chemischer Phosphorelimination und Nachklärung ausgeführt. Die Ausbaugröße der Anlage soll künftig von 2.500 EW auf 3.000 EW angehoben werden. Hierfür wird der bestehende Betrieb mit einer aeroben Schlammstabilisierung zu Belebungsanlage ohne Schlammstabilisierung umgestellt.

4.2 Kanalisation

Betrachtungen zur Kanalisation und Mischwasserbehandlung sind nicht Gegenstand vorliegender Ausarbeitung.

Hierzu verweisen wir auf folgende Unterlage:

Antrag auf Erteilung einer gehobenen wasserrechtlichen Erlaubnis nach §15 WHG für das Einleiten von Abwasser aus der Mischwasserkanalisation in den Irseer Bach

vom 01.07.2025, Projektnummer 124431, aufgestellt von Steinbacher-Consult.

4.3 Kläranlage

4.3.1 Kläranlagenstandort

Die Kläranlage befindet sich auf dem Flurstück 259/55 Gemarkung Irsee, etwa 500m östlich von Irsee. Das Gelände wird durch diese Straße nach Süden und durch den Irseer Bach nach Norden hin begrenzt. Die Kläranlage liegt an der Ortsverbindungsstraße nach Irsee nach Leinau, von welcher aus die Kläranlagenzufahrt abzweigt. Das in der Kläranlage behandelte Abwasser wird auf dem Flurstück 310/2 Gemarkung Irsee in den Irseer Bach eingeleitet.

4.3.2 Einleitanforderungen

Für die Einleitanforderungen an die Kläranlage wurden folgende Mindestanforderungen durch das WWA bekannt gegeben, laut E-Mail vom 18.10.2022 (Anlage 4).

Tabelle 20: Einleitanforderungen

Parameter	Kurzbez.	Überwachungswert (Mindestanforderung)	Einheit
Chemischer Sauerstoff-	CSB	75	mg/l
bedraf			
Biochemischer Sauerstoff-	BSB5	15	mg/l
bedarf			
Ammonium-Stickstoff *)	NH4-N	5	mg/l
Stickstoff gesamt *)	Nges	18	mg/l
Abfiltrierbare Stoffe **)	AFS	20	mg/l
Phopshor gesamt	Pges	2	mg/l

^{*)} im Zeitraum zwischen 1.5. und 31.10.

4.3.3 Verfahrensführung

Die Verfahrensführung der Kläranlage Irsee ist in Kapitel 3.11 beschrieben.

Es sind derzeit keine prozesstechnischen Änderungen geplant.

^{**)} von der nicht abgesetzten, homogenisierten qualifizierten Stichprobe bei Trockenwetter

4.3.4 Betrachtete Lastfälle

Für den rechnerischen Nachweis der Anlage wird zunächst die Belastung aus der ermittelten Belastung der angeschlossenen Einwohner und dem angeschlossenen Gewerbe angesetzt (siehe Kapitel 3.11).

Im folgenden Schritt werden die Verhältnisse für die Bemessungsbelastung entsprechend der ermittelten Ausbaugröße berechnet (siehe Kapitel 3.11).

Ist-Belastung: 2.770 EWPrognose-Belastung: 3.000 EW

Anlagenteile, die im Wesentlichen durch hydraulische Belastung gekennzeichnet sind, werden anhand der maximalen Abwassermenge von 40 l/s bewertet. Hier wird keine Unterscheidung in Ist- und Prognose-Belastung vorgenommen.

Markt Irsee -

Antrag auf die gehobene wasserrechtliche Erlaubnis nach § 15 WHG

4.4 Bemessungswerte

4.4.1 Lastfall: Ist-Belastung

Die Bemessungsfrachten des Zulaufs der Kläranlage sind in nachfolgender Tabelle zusammengestellt.

Tabelle 21: Bemessungsfrachten IST-Belastung

Parameter	Kurzbez.	Zulauf Kläranlage	Einheit
Chemischer Sauerstoffbedarf	CSB	332	kg/d
Biochemischer Sauerstoffbedarf	BSB5	166	kg/d
Ammonium-Stickstoff *)	NH4-N	19,4	kg/d
Stickstoff gesamt *)	Nges	30,5	kg/d
Abfiltrierbare Stoffe **)	AFS	194	kg/d
Phopshor gesamt	Pges	5,0	kg/d

Die Zulauffrachten wurden aus der ermittelten Ist-Belastung (2.770 EW) nach Literaturwerten ermittelt.

Der Bemessungszufluss wurde aus der mittleren Konzentration (BTB 2019-07/2023) und der Zulauffracht gebildet.

$$Q_d = \frac{B_{d,CSB} * 1000}{C_{CSB}} = \frac{332 \, kg/d * 1000}{750 \, mg/l} = 442,67 \frac{m^3}{d} \sim 450 \, \frac{m^3}{d}$$

Bemessungswerte Abwassermengen:

mittlerer jährlicher Trockenwetterabfluss: $Q_{T.aM} = 14,76 \text{ m}^3/\text{h} = 4,1 \text{ l/s}$

Tagesabwassermenge: $Q_{d,konz} = 450 \text{ m}^3/\text{d}$

Trockenwetterabfluss: $Q_t = 50 \text{ m}^3/\text{h} = 13,9 \text{ l/s}$ Mischwasserabfluss: $Q_m = 144 \text{ m}^3/\text{h} = 40 \text{ l/s}$

Aus der hydraulischen Bemessung erhält man einen maximaler Trockenwetterabfluss (Q_t) von ca. 40 m³/h. Aufgerundet wird daher von einem maximalen Trockenwetterabfluss von 50 m³/h ausgegangen.

Markt Irsee -

Antrag auf die gehobene wasserrechtliche Erlaubnis nach § 15 WHG

4.4.2 Lastfall: Prognose-Belastung

Die Bemessungsfrachten des Zulaufs der Kläranlage sind in nachfolgender Tabelle zusammengestellt.

Tabelle 22: Bemessungsfrachten Prognose-Belastung

Parameter	Kurzbez.	Zulauf Kläranlage	Einheit
Chemischer Sauerstoffbedarf	CSB	360	kg/d
Biochemischer Sauerstoffbedarf	BSB5	190	kg/d
Ammonium-Stickstoff *)	NH4-N	21	kg/d
Stickstoff gesamt *)	Nges	33	kg/d
Abfiltrierbare Stoffe **)	AFS	210	kg/d
Phopshor gesamt	Pges	5,4	kg/d

Die Zulauffrachten wurden aus der ermittelten Ist-Belastung (3.000 EW) nach Literaturwerten ermittelt.

Der Bemessungszufluss wurde aus der mittleren Konzentration (BTB 2019-07/2023) und der Zulauffracht gebildet.

$$Q_d = \frac{B_{d,CSB} * 1000}{C_{CSB}} = \frac{360 \, kg/d * 1000}{750 \, mg/l} = 480 \frac{m^3}{d}$$

Bemessungswerte Abwassermengen:

mittlerer jährlicher Trockenwetterabfluss: $Q_{T.aM} = 16,56 \text{ m}^3/\text{h} = 4,6 \text{ l/s}$

Tagesabwassermenge: $Q_{d,konz} = 480 \text{ m}^3/\text{d}$

Trockenwetterabfluss: $Q_t = 50 \text{ m}^3/\text{h} = 13.9 \text{ l/s}$ Mischwasserabfluss: $Q_m = 144 \text{ m}^3/\text{h} = 40 \text{ l/s}$

Aus der hydraulischen Bemessung erhält man einen maximaler Trockenwetterabfluss (Q_t) von ca. 41 m³/h. Aufgerundet wird daher von einem maximalen Trockenwetterabfluss von 50 m³/h ausgegangen.

4.5 Überrechnung Biologie, IST-Belastung 2.770 EW

4.5.1 Belebung und Nachklärung

Die Überrechnung von Belebung und Nachklärung erfolgt anhand des Arbeitsblattes DWA-A131:2016. Es wird die Bemessungs-Software "Belebungs-Expert", Version 3.03, verwendet.

Aus der Überrechnung ergeben sich für die betrachtenden Lastfälle die Kennwerte entsprechend nachfolgender Tabelle.

Tabelle 23: Überrechnung Biologie, IST-Belastung, resultierende Kennwerte

Parameter	Kurzbez.	Einheit		Prognose	
Temperatur	Т	°C	12	20	8
Ausbaugröße		EW120	2.770	2.770	2.770
Belebungsanlage					
Volumen Belebung, erforderlich	$V_{BB,erf.}$	m³	787	787	787
Volumen Belebung, vorhanden	$V_{BB,vorh.}$	M ³	935	935	935
Trockensubstanz	TS _{BB}	g/l	3,5	3,5	3,5
Vorhandeses Schlammalter	t TS	D	18,3	19,6	17,7
Vorhandenes aerobes Schlammalter	t _{TS,aer.}	D	10,8	11,7	10,2
Schlammproduktion	ÜS₀	kg/d	178	167	185
Anteil Denitrifikation	V _D /V _{BB}	-	0,41	0,40	0,42
Fällmittelbedarf	FM	kgMe/d	6,6	6,6	6,6

Tabelle 24: Überrechnung Nachklärung, IST-Belastung, resultierende Kennwerte

Parameter	Kurzbez.	Einheit	Prognose
Nachklärung			
Mischwasserzulauf	Q _m	m³/h	144
Schlammindex	ISV	ml/g	100
Eindickzeit	t _E	h	1,5
Rücklaufverhältnis	RV	-	0,75
Zul. Trockensubstanz BB	TS _{AB}	g/	3,5
Gewählter Durchmesser	D _{NB}	m	10,0
Klarwasserzone	h₁	m	0,7
Übergangs- und Pufferzone	h _{2/3}	m	3,79
Eindick- und Räumzone	h ₄	m	6,32
Gesamttiefe	h _{ges}	m	10,82
Senkr. Wandhöhe unter WSP	hs	m	2,83

Das Berechnungsprotokoll der Rechenläufe zu Lastfall "IST-Belastung" ist als Anlage 1 beigefügt. Dort sind die kompletten Eingabedaten und Ergebnisse zu entnehmen.

4.5.2 Belüftung und Gebläsestation

Belüftungseinrichtungen und Gebläsestation können anhand des erforderlichen Sauerstoffeintrages durch Vergleich der erforderlichen Leistungen mit den vorhandenen Leistungen bewertet werden.

Tabelle 25: Bemessung Belüftung IST-Belastung

			Lastfall 1 Ø-Ist	Lastfall 2 Max-Ist	Lastfall 3 Min-Ist
Belastungsäquivalent	EW		2.770	2.770	2.770
Temperatur	T	°C	12	20	8
Sauerstoffbedarf, C-Elimination	OVd,C	kgO2/d	179	193	170
Sauerstoffbedarf, Nitrifikation	OVd,N	kgO2/d	103	107	100
Sauerstoff Denitrifikation	OVd,D	kgO2/d	56	59	54
Täglicher Sauerstoffbedarf	Ovd	kgO2/d	226,00	241,00	216,00
Stündlicher Sauerstoffbedarf	Ovh	kgO2/h	9,42	10,04	9,00
Stoßfaktor C-Elimination	fC	-	1,13	1,13	1,14
Stoßfaktor N-Elimination	fN	-	1,83	1,77	1,88
Denitrifikations-Anteil	VD/VBB	-	0,41	0,40	0,42
Schlammalter	tTS	d	18,3	19,6	17,7
Durchschnittlicher Sauerstoffver-	OVh,aM	kgO2/h			
brauch	,		9,42	10,04	9,00
Maximaler Sauerstoffverbrauch	OVh,max		12,98	13,47	12,67
Minimaler Sauerstoffbedarf	Ovh,min	kgO2/h	3,88	4,46	3,51
Auswahl	•	J ,	OVh,aM	OVh,max	Ovh,min
Sauerstoffbedarf Berechnung	Ovh	kgO2/h	9,42	13,47	3,51
Sauerstoffbedarf Berechnung in-	Ovh,inter	kgO2/h	3,42	13,47	3,31
termittierend	Ovii,iiitei	KgO2/11	16,0	22,5	6,0
Sättigungskonzentration bei 20°C	cs,20	mg/l	9,1	9,1	9,1
Sättigungskonzentration	CS, ZU	mg/l	10,78	9,10	11,84
O2-Konzentration	CX	mg/l	2,0	2,0	2,0
Wassertiefe	hBB	=	2,0 5,71	2,0 5,71	2,0 5,71
Einblastiefe	hD	m m	5,71 5,5	5,71 5,5	5,71 5,5
Tiefenfaktor	fd	m -	5,5 1,27	3,3 1,27	3,3 1,27
Grenzflächenfaktor	alpha	-	0,65	0,65	0,65
Faktor Salzgehalt	beta	-	1,00	1,00	1,00
Erhöhungsfaktor Intermittierende	fint	_	1,00	1,00	1,00
Belüftung	IIIIC	_	1,69	1,67	1,72
Höhe der Anlage	h	m	702	702	702
Atmosphär. Druck	roatm	hPa	932,3	932,3	932,3
Temperaturkorrekturfaktor	theta	-	1,024	1,024	1,024
·			1,024	1,024	1,024
spezifische Sauerstoffzufohr, Rein-	SSOTR	g/(Nm³*h)	2.2	20	2.0
wasser, Standardbed.		0//	20	20	20
spezifische Sauerstoffausnutzung,	SSOTE	%/m	6.7	6.7	c 7
Reinwasser, Standardbed.			6,7	6,7	6,7
erf. Sauerstoffzufuhr in Reinwasser erf. Luftbedarf	SOTR QL	kgO2/h Nm³/h	32,38 294,38	46,30 420,89	12,07 109,72

Mit den frequenzgesteuerten Gebläsen kann ins Belebungsbecken folgende Luftmenge eingebracht werden (siehe auch Kapitel 3.12.5):

 $V = 280,80 \text{ Nm}^3/h - 561,60 \text{ Nm}^3/h > \text{erforderlicher Luftbedarf}$

Somit sind die vorhandenen Verdichter für den Betrieb ausreichend dimensioniert.

4.6 Überrechnung Biologie, Prognose-Belastung 3.000 EW

4.6.1 Belebung und Nachklärung

Die Überrechnung von Belebung und Nachklärung erfolgt anhand des Arbeitsblattes DWA-A131:2016. Es wird die Bemessungs-Software "Belebungs-Expert", Version 3.03, verwendet.

Aus der Überrechnung ergeben sich für die betrachtenden Lastfälle die Kennwerte entsprechend nachfolgender Tabelle.

Tabelle 26: Überrechnung Biologie, Prognose-Belastung, resultierende Kennwerte

Parameter	Kurzbez.	Einheit		Prognose	
Temperatur	Т	°C	12	20	8
Ausbaugröße		EW120	3.000	3.000	3.000
Belebungsanlage					
Volumen Belebung, erforderlich	$V_{BB,erf.}$	m³	899	899	899
Volumen Belebung, vorhanden	$V_{BB,vorh.}$	M³	935	935	935
Trockensubstanz	TS _{BB}	g/l	3,5	3,5	3,5
Vorhandeses Schlammalter	t _{TS}	D	16,7	17,9	16,1
Vorhandenes aerobes Schlammalter	t _{TS,aer.}	D	9,9	10,7	9,3
Schlammproduktion	ÜS₀	kg/d	195	181	203
Anteil Denitrifikation	V _D /V _{BB}	-	0,41	0,40	0,42
Fällmittelbedarf	FM	kgMe/d	7,2	7,2	7,2

Tabelle 27: Überrechnung Nachklärung, Prognose-Belastung, resultierende Kennwerte

Parameter	Kurzbez.	Einheit	Prognose
Nachklärung			
Mischwasserzulauf	Qm	m³/h	144
Schlammindex	ISV	ml/g	100
Eindickzeit	t _E	h	1,5
Rücklaufverhältnis	RV	-	0,75
Zul. Trockensubstanz BB	TS _{AB}	g/	3,5
Gewählter Durchmesser	D _{NB}	m	10,0
Klarwasserzone	h₁	m	0,70
Übergangs- und Pufferzone	h _{2/3}	m	3,79
Eindick- und Räumzone	h ₄	m	6,32
Gesamttiefe	h _{ges}	m	10,82
Senkr. Wandhöhe unter WSP	hs	m	2,83

Das Berechnungsprotokoll der Rechenläufe zu Lastfall "Prognose-Belastung" ist als Anlage 2 beigefügt. Dort sind die kompletten Eingabedaten und Ergebnisse zu entnehmen.

4.6.2 Belüftung und Gebläsestation

Belüftungseinrichtungen und Gebläsestation können anhand des erforderlichen Sauerstoffeintrages durch Vergleich der erforderlichen Leistungen mit den vorhandenen Leistungen bewertet werden.

Tabelle 28: Bemessung Belüftung Prognose-Belastung

			Lastfall 1 Ø-Ist	Lastfall 2 Max-Ist	Lastfall 3 Min-Ist
Belastungsäquivalent	EW		3.000	3.000	3.000
Temperatur	T	°C	12	20	8
Sauerstoffbedarf, C-Elimination	OVd,C	kgO2/d	191	207	181
Sauerstoffbedarf, Nitrifikation	OVd,N	kgO2/d	110	116	107
Sauerstoff Denitrifikation	OVd,D	kgO2/d	60	63	58
Täglicher Sauerstoffbedarf	Ovd	kgO2/d	241,00	260,00	230,00
Stündlicher Sauerstoffbedarf	Ovh	kgO2/h	10,04	10,83	9,58
Stoßfaktor C-Elimination	fC	-	1,14	1,14	1,14
Stoßfaktor N-Elimination	fN	-	1,91	1,86	1,88
Denitrifikations-Anteil	VD/VBB	-	0,41	0,40	0,42
Schlammalter	tTS	d	16,7	17,9	16,1
Durchschnittlicher Sauerstoffver-	OVh,aM	kgO2/h			
brauch			10,04	10,83	9,58
Maximaler Sauerstoffverbrauch	OVh,max		14,21	14,99	13,51
Minimaler Sauerstoffbedarf	Ovh,min	kgO2/h	4,08	4,75	3,67
Auswahl			OVh,aM	OVh,max	Ovh,min
Sauerstoffbedarf Berechnung	Ovh	kgO2/h	10,04	14,99	3,67
Sauerstoffbedarf Berechnung in-	Ovh,inter	kgO2/h			
termittierend			17,0	25,0	6,3
Sättigungskonzentration bei 20°C	cs,20	mg/l	9,1	9,1	9,1
Sättigungskonzentration	CS	mg/l	10,78	9,10	11,84
O2-Konzentration	сх	mg/l	2,0	2,0	2,0
Wassertiefe	hBB	m	5,71	5,71	5,71
Einblastiefe	hD	m	5,5	5,5	5,5
Tiefenfaktor	fd	-	1,27	1,27	1,27
Grenzflächenfaktor	alpha	-	0,65	0,65	0,65
Faktor Salzgehalt	beta	-	1,00	1,00	1,00
Erhöhungsfaktor Intermittierende	fint	-			
Belüftung			1,69	1,67	1,72
Höhe der Anlage	h	m	702	702	702
Atmosphär. Druck	roatm	hPa	932,3	932,3	932,3
Temperaturkorrekturfaktor	theta	-	1,024	1,024	1,024
spezifische Sauerstoffzufohr, Rein-	SSOTR	g/(Nm³*h)			
wasser, Standardbed.		5/ /	20	20	20
spezifische Sauerstoffausnutzung,	SSOTE	%/m	•		
Reinwasser, Standardbed.		, =,	6,7	6,7	6,7
erf. Sauerstoffzufuhr in Reinwasser erf. Luftbedarf	SOTR QL	kgO2/h Nm³/h	34,53 313,92	51,50 468,22	12,63 114,79

Mit den frequenzgesteuerten Gebläsen kann ins Belebungsbecken folgende Luftmenge eingebracht werden (siehe auch Kapitel 3.12.5):

 $V = 280,80 \text{ Nm}^3/h - 561,60 \text{ Nm}^3/h > \text{erforderlicher Luftbedarf}$

Somit sind die vorhandenen Verdichter für den Betrieb ausreichend dimensioniert.

4.7 Schlammbehandlung

4.7.1 Übersicht und rechnerische Abschätzung

Die Schlammbehandlung, bestehend aus einem Schlammstapelbehälters mit statischer Eindickung, kann anhand einer Bilanzierung der rechnerisch anfallenden Schlammströme bewertet werden. Die Bilanzierung ist wie folgt in einfacher Form dargestellt:

Tabelle 29: Schlammbilanz

		im Mittel	max. Bemessung
Schlammanfall	kgTS/d	137,00	195,00
	kgTS/Wo	959,00	1.365,00
a) nicht eingedickt			
Konzentration	g/l	8,00	8,00
Menge je d	m³/d	17,13	24,38
Menge je Woche	m³/Wo	119,88	170,63
b) statisch eingedickt			
Konzentration	g/l	20,00	20,00
Menge je d	m³/d	6,85	9,75
Menge je Woche	m³/Wo	47,95	68,25

4.7.2 Schlammentsorgung

Der teilstabilisierte Schlamm wird im Schlammstapelbehälter statisch eingedickt und zur weiteren Behandlung zur Kläranlage Kaufbeuren geliefert.

4.8 Bewertung

Aus den Kennwerten der Überrechnung der Anlage nach DWA-A 131:2026 können folgende Schlüsse gezogen werden:

Für die künftige Belastung mit 3.000 EW (siehe Kapitel 3.11):

- Der Schlamm wird nicht mehr stabilisiert, aufgrund der thermischen Verwertung ist dies auch nicht erforderlich.
- Die vorhandene Gebläseleistung, ist für den Prognosefall von 3.000 EW ausreichend. Derzeit laufen die Gebläse im Einzelbetrieb, künftig müssen diese auf einen Parallelbetrieb umgestellt werden, um die erforderliche Luftleistung bereitstellen zu können. Um einzelne Belastungsspitzen auffangen zu können ist ggf. die Luftleistung über den Prognosezustand von 3.000 EW zu erhöhen.
- Die Belüfter haben ihre maximale Lebensdauer erreicht und sind zu erneuern.
- Rechnerisch können die erforderlichen Ablaufwerte nachgewiesen werden.

Die Abwasserreinigung erfolgt nach dem Stand der Technik.

Die aufgetretenen Spitzen im Messprogramm sind auf die Einleitung aus der Brauerei zurückzuführen. Die Brauerei wurde im Rahmen der Auswertung des Messprogramms begangen und es wurde nach Optimierungspotentialen gesucht. Die Brauerei sichert zu, den vertraglichen Wert von 700 EW einzuhalten und ist bestrebt den Zufluss zur Kläranlage durch geeignete Maßnahmen zu vergleichmäßigen. Hierzu soll das Abwasser in einem Speichertank zwischengelagert und gleichmäßig der Kläranlage zugeführt werden.

Der von der Behörde geforderte Wert für den mittleren Trockenwetterabfluss von max. 3 l/s aufgrund eines angenommenen (berechneten) mittleren Niedrigwasserabflusses (MNQ) von 12 l/s (siehe Anhang 4), ist auch mit Umbaumaßnahmen auf der Kläranlage bzw. im Kanalnetz nicht umsetzbar. Wir schlagen vor den MNQ durch Messungen zu überprüfen.

4.9 Hydraulische Überrechnung

Die Notwendigkeit einer hydraulischen Überrechnung wurde untersucht.

Der Zufluss zur Kläranlage wird am vorliegenden RÜB auf 40 l/s gedrosselt. Der maximale Mischwasserzulauf zur Kläranlage liegt somit bei 40 l/s und entspricht dem derzeitigen Genehmigungsumfang ($Q_m = 40 \text{ l/s}$).

Da sich keinerlei Änderungen hinsichtlich des maximalen Mischwasserzulaufs ergeben ist keine weitere hydraulische Überrechnung erforderlich.

Markt Irsee -

Antrag auf die gehobene wasserrechtliche Erlaubnis nach § 15 WHG

5. Auswirkung des Vorhabens

5.1 Einleitung aus der Kanalisation

Einleitungen aus der Kanalisation werden in gesonderter Unterlage betrachtet.

Hierzu verweisen wir auf folgende Unterlage:

Antrag auf Erteilung einer gehobenen wasserrechtlichen Erlaubnis nach §15 WHG für das Einleiten von Abwasser aus der Mischwasserkanalisation in den Irseer Bach

vom 01.07.2025, Projektnummer 124431, aufgestellt von Steinbacher-Consult.

5.2 Einleitung aus der Kläranlage

Aus der Kläranlage Irsee wird nach dem Stand der Technik behandeltes Abwasser in den Irseer Bach eingeleitet. Die Einleitstelle befindet sich auf dem Flurstück 310/2 Gemarkung Irsee.

Die geplanten Einleitmengen sind:

mittlerer jährlicher Trockenwetterabfluss: $Q_{T,aM} = 16,56 \text{ m}^3/\text{h} = 4,6 \text{ l/s}$

Tagesabwassermenge: $Q_d = 700 \text{ m}^3/\text{d}$

Trockenwetterabfluss: $Q_t = 50 \text{ m}^3/\text{h} = 13.9 \text{ l/s}$ Mischwasserabfluss: $Q_m = 144 \text{ m}^3/\text{h} = 40 \text{ l/s}$

5.3 Prüfung hinsichtlich UVP-Pflicht

Für die bestehende Kläranlage Irsee liegt bereits eine wasserrechtliche Erlaubnis vor, die am 31.12.2025 ausläuft, und vor diesem Hintergrund neu beantragt wird. Änderungen bezüglich Gebäude, Becken, sonstige technische Einrichtungen und Abwassermengen sind nicht vorgesehen.

Die Kläranlage Irsee ist ausgelegt für organisch belastetes Abwasser von 180 kg/d BSB₅. Damit ist für den Betrieb der Abwasserbehandlungsanlage, nach UVPG §§ 3a und 3b in Verbindung mit Anlage 1 Nr. 13.1.3 eine standortbezogene Prüfung des Einzelfalls durchzuführen.

Die Ergebnisse dieser allgemeinen Vorprüfung des Einzelfalls sind in Beilage 2 zusammengefasst.

Die Durchführung einer Umweltverträglichkeitsprüfung ist nicht erforderlich.

Markt Irsee -

Antrag auf die gehobene wasserrechtliche Erlaubnis nach § 15 WHG

6. Rechtsverhältnisse

Durch die Einleitung behandelten Abwassers in den Vorfluter wird der Tatbestand der Gewässerbenutzung erfüllt. Nach §8 WHG ist hierzu eine Erlaubnis oder Bewilligung erforderlich. Sofern öffentliches Interesse an der Einleitung besteht, ist nach §15 WHG die Erteilung einer gehobenen Erlaubnis notwendig.

Für die Einleitung behandelten Abwassers aus der Kläranlage des Marktes Irsee, betrieben durch den Markt Irsee, wird die Neuerteilung einer **gehobenen Erlaubnis nach §15 WHG** beantragt, und zwar für folgende Eckdaten:

Ausbaugröße: 3.000 EW 60 (BSB₅)

Größenklasse: 2

Die Zulaufbeprobung erfolgt bisher und künftig aus dem Ablauf des Sandfangs.

Befristung: 20 Jahre

mittlerer jährlicher Trockenwetterabfluss: $Q_{T.aM} = 16,56 \text{ m}^3/\text{h} = 4,6 \text{ l/s}$

Tagesabwassermenge: $Q_d = 700 \text{ m}^3/\text{d}$

Trockenwetterabfluss: $Q_t = 50 \text{ m}^3/\text{h} = 13,9 \text{ l/s}$ Mischwasserabfluss: $Q_m = 144 \text{ m}^3/\text{h} = 40 \text{ l/s}$

Einleitgrenzwerte:

Chemischer Sauerstoffbedarf	CSB	75 mg/l
Biochemischer Sauerstoffbedarf	BSB 5	15 mg/l
Ammonium-Stickstoff *)	NH 4 -N	5 mg/l
Organischer Stickstoff *)	N ges	18 mg/l
Gesamt-Phosphor	P ges	2 mg/l
Abfiltrierbare Stoffe **)	AFS	20 mg/l

^{*)} im Zeitraum zwischen 1.5. und 31.10.

In der Zeit vom 1. November bis 30. April ist die Anlage so zu betreiben, dass eine bestmögliche Nitrifikation und Denitrifikation erzielt werden.

^{**)} von der nicht abgesetzten, homogenisierten qualifizierten Stichprobe bei Trockenwetter Die Werte sind aus der nicht abgesetzten, homogenisierten 2h-Mischprobe einzuhalten.

7. Wartung und Verwaltung der Anlage

Betrieb, Wartung und Verwaltung der Anlage wird durch den Markt Irsee durchgeführt.

8. Schlussbemerkung

Die vorliegende Unterlage fasst die wesentlichen Daten der bestehenden Kläranlage Irsee zusammen. Vorhandene Baulichkeiten und die Betriebsverhältnisse wurden unter Berücksichtigung geltender Vorschriften und Richtlinien bewertet.

Die Kläranlage Markt Irsee ist in der Lage das anfallende Abwasser nach dem Stand der Technik unter Berücksichtigung der Mindestanforderungen zu reinigen. Die Mindestanforderungen werden unterschritten.

Mit vorliegender Unterlage wird für die Einleitung behandelten Abwassers aus der Kläranlage Irsee in den Irseer Bach die gehobene Erlaubnis nach §15 WHG beantragt.

Der beantragte Umfang der Erlaubnis ist im Einzelnen in Kapitel 6 zusammengestellt.

Eine Allgemeine Vorprüfung des Einzelfalls nach dem Gesetz über die Umweltverträglichkeitsprüfung wurde durchgeführt. Die Durchführung einer Umweltverträglichkeitsprüfung ist nicht erforderlich.

Neusäß, 01.07.2025 Projekt-Nr. 123132 SSTE/MFRA/mfra aufgestellt: Steinbacher-Consult Ingenieurgesellschaft mbH & Co. KG Richard-Wagner-Straße 6 86356 Neusäß

ANLAGEN

Anlage 1 Überrechnung IST-Belastung

- 1-

DWA-Regelwerk

Belebungs-Expert Berechnung von einstufigen Belebungsanlagen nach dem DWA-Arbeitsblatt A131(2016)

Projekt: Wasserrecht KLA Irsee _IST-Bemessung (2.770 EW)

bearbeitet von: MFRA berechnet am: 05.06.2025

Anlagenkonfiguration:

o Belebungsbecken

Nachklärung

Reinigungsziele:

- O Abbau des org. Kohlenstoffs
- o Nitrifikation
- o Denitrifikation
- o Phosphor-Simultanfällung

Denitrifikationsverfahren: intermittierende Denitrifikation

Fällmittel: dreiwertiges Eisen

Nachklärung: Beckentyp Trichterbecken, Strömung vertikal, Räumertyp RT!

Lastannahmen:

Größenklasse: 332 kg CSB/d

Berechnete Lastfälle:

- O Lastfall 1: Bemessung
- O Lastfall 2: Nachweis der Nitrifikation bei tiefster Temperatur
- O Lastfall 3: Ermittlung des Sauerstoffbedarfs bei höchster Temperatur
- O Lastfall 4: Sonderlastfall

	Lastfall	1	2	3	4
Zulaufmenge:					
Abwassermenge	Q _{d,Konz} .	450	450	450	450 m ³ /d
	Q_t	14	14	14	14 m ³ /h
Zulaufkonzentrationen:					
CSB	C _{CSB,ZB}	738	738	738	738 mg/l
Gelöster CSB	S _{SCSB,ZB}	256	256	256	256 mg/l
Abfiltrierbare Stoffe	X _{TS,ZB}	431	431	431	431 mg/l
Kjeldahl-Stickstoff	$C_{KN,ZB}$	67,7	67,7	67,7	67,7 mg/l
Ammoniumstickstoff	S _{NH4,ZB}	43,1	43,1	43,1	43,1 mg/l
Nitratstickstoff	S _{NO3,ZB}	0,0	0,0	0,0	0,0 mg/l
Phosphor	$C_{P,ZB}$	11,1	11,1	11,1	11,1 mg/l
Säurekapazität	S _{KS,ZB}	8,00	8,00	8,00	8,00 mmol/l
Zulauffrachten:					
CSB	$B_{d,CSB}$	332	332	332	332 kg/d
Gelöster CSB	B _{d,SCSB}	115	115	115	115 kg/d
Abfiltrierbare Stoffe	$B_{d,XTS}$	194	194	194	194 kg/d
Kjeldahl-Stickstoff	$B_{d,KN}$	30,5	30,5	30,5	30,5 kg/d
Ammoniumstickstoff	B _{d,NH4}	19,4	19,4	19,4	19,4 kg/d
Nitratstickstoff	B _{d,NO3}	0,0	0,0	0,0	0,0 kg/d
Phosphor	$B_{d,P}$	5,0	5,0	5,0	5,0 kg/d

123132_2770W_IST_rev2.gde

- 2-

Temperatur im Belebungsbecken	Т	12,0 Grad C
Stickstoffbilanz:	t _e	12,0 Glau C
Zulauf: C _{KN} + S _{NO3}	C _N	67,7 mg/l
im Schlamm gebunden		7,4 mg/l
Ammonium im Ablauf	XorgN,BM	
	S _{NH4,AN}	0,0 mg/l
organischer Stickstoff im Ablauf	S _{orgN,AN}	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3,N}	53,1 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3,AN}	10,8 mg/l
zu denitrifizierendes Nitrat	S _{NO3,D}	42,3 mg/l
Gewählter Denitrifikationsanteil	V _D /V _{BB}	0,41 -
vorhandene Denitrifikationskapazität	S _{NO3,D}	42,7 mg/l
denitrifiziertes Nitrat	S _{NO3,D}	42,7 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	10,4 mg/l
Maximale Taktzeit	t⊤	12,73 h
Phosphorelimination:		
Phosphor im Zulauf	$C_{P,ZB}$	11,1 mg/l
Im Schlamm gebunden (normale Aufnahme)	X _{P,BM}	3,7 mg/l
Im Schlamm gebunden (erhöhte Aufnahme)	$X_{P,BioP}$	0,0 mg/l
Phosphor im Ablauf (vorhanden)	SPO4,AN	2,0 mg/l
Phosphor im Ablauf (Sollwert)	SPO4,AN	2,0 mg/l
gefällter Phosphor	X _{P,Fäll}	5,4 mg/l
Fällmittel: Dreiwertiges Eisen		
Fällmittelbedarf	FM	6,6 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TSAB	4,67 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TSAB	3,50 kg/m ³
Schlammalter und Belastungskennwerte:		
Erforderliches Schlammalter	erf.t _{TS}	15,1 d
Erforderliches Volumen	V _{BB}	787 m ³
Gewähltes Volumen	V _{BB}	935 m ³
Vorhandenes Schlammalter	tTS	18,3 d
Vorhandenes aerobes Schlammalter	t _{TS,aer} .	10,8 d
Vorhandener Prozessfaktor	PF	2,37 -
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ÜS _{d,C}	162 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlamm aus biol. P-Elimination	ÜS _{d,BioP}	0 kg/d
Schlamm aus P-Fällung	ÜS _{d,F}	16 kg/d
Schlammproduktion gesamt	ÜSd	178 kg/d
Sauerstoffverbrauch:	000	11.5 kg/d
aus Kohlenstoffelimination	OV _{d,C}	179 kg/d
aus Nitrifikation		
	OV _{d,N}	103 kg/d
aus C-Elimination durch Denitrifikation	OV _{d,D}	-56 kg/d
Täglicher Sauerstoffverbrauch	OVd	226 kg/d
Stoßfaktor für C-Elimination	fc	1,13 -

123132_2770W_IST_rev2.gde

- 3-

Stoßfaktor für Nitrifikation	f _N	1,83 -
Maximaler stündl. Sauerstoffverbrauch	OVh	22,0 kg/h
Säurekapazität:	OVI	22,0 kg/11
Säurekapazität im Ablauf	SKS _{AN}	3,54 mmol/l
Belebungsbecken, Lastfall tiefste Temperatur:	окоди	3,34 1111101/1
Temperatur im Belebungsbecken	Т	8,0 Grad C
Stickstoffbilanz:	'	o,o Grad C
Zulauf: C _{KN} + S _{NO3}	Cu	67.7 ma/l
	C _N	67,7 mg/l
im Schlamm gebunden	X _{orgN,BM}	9,2 mg/l
Ammonium im Ablauf	S _{NH4,AN}	0,0 mg/l
organischer Stickstoff im Ablauf	S _{orgN,AN}	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3,N}	51,7 mg/l
Gewählter Denitrifikationsanteil	V _D /V _{BB}	0,42 -
vorhandene Denitrifikationskapazität	S _{NO3,D}	41,5 mg/l
denitrifiziertes Nitrat	S _{NO3,D}	41,5 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	10,2 mg/l
Phosphorelimination:		
Phosphor im Zulauf	$C_{P,ZB}$	11,1 mg/l
Im Schlamm gebunden (normale Aufnahme)	X _{P,BM}	3,7 mg/l
Im Schlamm gebunden (erhöhte Aufnahme)	$X_{P,BioP}$	0,0 mg/l
Phosphor im Ablauf (vorhanden)	S _{PO4,AN}	2,0 mg/l
Phosphor im Ablauf (Sollwert)	S _{PO4,AN}	2,0 mg/l
gefällter Phosphor	X _{P,Fäll}	5,4 mg/l
Fällmittel: Dreiwertiges Eisen		
Fällmittelbedarf	FM	6,6 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TS _{AB}	4,67 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TS _{AB}	3,50 kg/m ³
Schlammalter und Belastungskennwerte:		
Vorhandenes Schlammalter	t _{TS}	17,7 d
Vorhandenes aerobes Schlammalter	t _{TS,aer.}	10,2 d
Vorhandener Prozessfaktor	PF	1,51 -
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ÜS _{d,C}	169 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d.ext}	0 kg/d
Schlamm aus biol. P-Elimination	ÜS _{d,BioP}	0 kg/d
Schlamm aus P-Fällung	ÜS _{d,F}	16 kg/d
Schlammproduktion gesamt	ÜSd	185 kg/d
Sauerstoffverbrauch:		
aus Kohlenstoffelimination	$OV_{d,C}$	170 kg/d
aus Nitrifikation	OV _{d,N}	100 kg/d
aus C-Elimination durch Denitrifikation	OV _{d,D}	-54 kg/d
Täglicher Sauerstoffverbrauch	OVd	215 kg/d
Stoßfaktor für C-Elimination	fc	1,14 -
Stoßfaktor für Nitrifikation	fN	1.88 -
Maximaler stündl. Sauerstoffverbrauch	OVh	21,8 kg/h
Maximulai statiai. Gaderstonvelbiadori	OVh	21,0 kg/11

123132_2770W_IST_rev2.gde

- 4 -

Säurekapazität:		
Säurekapazität im Ablauf	SKSAN	3,56 mmol/l

123132_2770W_IST_rev2.gde

- 5-

Belebungsbecken, Lastfall maximaler Sauerstoffbedarf: Temperatur im Belebungsbecken	Т	20,0 Grad C
Stickstoffbilanz:	'	20,0 Grad C
Zulauf: C _{KN} + S _{NO3}	C _N	67,7 mg/l
m Schlamm gebunden		
•	X _{orgN,BM}	4,6 mg/l
Ammonium im Ablauf	S _{NH4,AN}	0,0 mg/l
organischer Stickstoff im Ablauf	S _{orgN,AN}	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3,N}	55,4 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3,AN}	10,8 mg/l
zu denitrifizierendes Nitrat	S _{NO3,D}	44,6 mg/l
Gewählter Denitrifikationsanteil	V _D /V _{BB}	0,40 -
vorhandene Denitrifikationskapazität	S _{NO3,D}	45,0 mg/l
denitrifiziertes Nitrat	S _{NO3,D}	45,0 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	10,4 mg/l
Maximale Taktzeit	t _T	12,15 h
Phosphorelimination:		
Phosphor im Zulauf	$C_{P,ZB}$	11,1 mg/l
lm Schlamm gebunden (normale Aufnahme)	$X_{P,BM}$	3,7 mg/l
m Schlamm gebunden (erhöhte Aufnahme)	$X_{P,BioP}$	0,0 mg/l
Phosphor im Ablauf (vorhanden)	Spo4,AN	2,0 mg/l
Phosphor im Ablauf (Sollwert)	Spo4,AN	2,0 mg/l
gefällter Phosphor	X _{P,Fäll}	5,4 mg/l
Fällmittel: Dreiwertiges Eisen		
Fällmittelbedarf	FM	6,6 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TS _{AB}	4,67 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TS _{AB}	3,50 kg/m ³
Schlammalter und Belastungskennwerte:		
Vorhandenes Schlammalter	t _{TS}	19,6 d
Vorhandenes aerobes Schlammalter	t _{TS,aer} .	11,7 d
Vorhandener Prozessfaktor	PF	5,63 -
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ÜS _{d.C}	151 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlamm aus biol. P-Elimination	ÜS _{d,Bio} P	0 kg/d
Schlamm aus P-Fällung	ÜS _{d,F}	16 kg/d
Schlammproduktion gesamt	ÜSd	167 kg/d
Sauerstoffverbrauch:		
aus Kohlenstoffelimination	OV _{d,C}	193 kg/d
aus Nitrifikation	OV _{d,N}	107 kg/d
aus C-Elimination durch Denitrifikation	OV _{d,D}	-59 kg/d
	OV _{d,D}	-39 kg/d 242 kg/d
Fäglicher Sauerstoffverhrauch	_	1,13 -
Täglicher Sauerstoffverbrauch		1 1.3 *
Stoßfaktor für C-Elimination	f _C	
	TC fN OVh	1,77 - 22,5 kg/h

123132_2770W_IST_rev2.gde

- 6-

Säurekapazität im Ablauf

SKSAN

3,54 mmol/l

123132_2770W_IST_rev2.gde

- 7-

Belebungsbecken, Sonderlastfall Prozess:	-	40.0.0
Temperatur im Belebungsbecken	Т	10,0 Grad C
Stickstoffbilanz:		07.7 #
Zulauf: C _{KN} + S _{NO3}	C _N	67,7 mg/l
m Schlamm gebunden	$X_{orgN,BM}$	8,3 mg/l
Ammonium im Ablauf	S _{NH4,AN}	0,0 mg/l
organischer Stickstoff im Ablauf	$S_{orgN,AN}$	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3,N}	52,4 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3,AN}	10,8 mg/l
zu denitrifizierendes Nitrat	S _{NO3,D}	41,6 mg/l
Gewählter Denitrifikationsanteil	V_D/V_{BB}	0,41 -
vorhandene Denitrifikationskapazität	S _{NO3,D}	41,6 mg/l
denitrifiziertes Nitrat	S _{NO3,D}	41,6 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	10,8 mg/l
Maximale Taktzeit	t _T	13,34 h
Phosphorelimination:		
Phosphor im Zulauf	C _{P,ZB}	11,1 mg/l
m Schlamm gebunden (normale Aufnahme)	X _{P,BM}	3,7 mg/l
m Schlamm gebunden (erhöhte Aufnahme)	X _{P,BioP}	0,0 mg/l
Phosphor im Ablauf (vorhanden)	Spo4.AN	2,0 mg/l
Phosphor im Ablauf (Sollwert)	SPO4.AN	2,0 mg/l
gefällter Phosphor	X _{P.Fäll}	5,4 mg/l
Fällmittel: Dreiwertiges Eisen	. ,	
Fällmittelbedarf	FM	6,6 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TS _{AB}	4,67 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TSAB	3,50 kg/m ³
Schlammalter und Belastungskennwerte:		
Vorhandenes Schlammalter	t _{TS}	18,0 d
Vorhandenes aerobes Schlammalter	t _{TS,aer} .	10,6 d
Vorhandener Prozessfaktor	PF	1,91 -
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ÜS _{d.C}	165 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlamm aus biol. P-Elimination	ÜS _{d,BioP}	0 kg/d
Schlamm aus P-Fällung	ÜS _{d,F}	16 kg/d
Schlammproduktion gesamt	ÜS _d	181 kg/d
Sauerstoffverbrauch:		
aus Kohlenstoffelimination	OV _{d,C}	174 kg/d
aus Nitrifikation	OV _{d,N}	101 kg/d
aus C-Elimination durch Denitrifikation	OV _{d,D}	-54 kg/d
Täglicher Sauerstoffverbrauch	OVd,D	-34 kg/d 221 kg/d
Stoßfaktor für C-Elimination	_	1,14 -
	fc	1, 14 -
	£	1.95
Stoßfaktor für C-Elimination Stoßfaktor für Nitrifikation Maximaler stündl. Sauerstoffverbrauch	f _N OV _h	1,85 - 21,7 kg/h

123132_2770W_IST_rev2.gde

- 8 -

Säurekapazität im Ablauf

SKSAN

3,52 mmol/l

123132_2770W_IST_rev2.gde

- 9-

Nachklärung		
Beckentyp: Trichterbecken		
Art der Durchströmung: vertikal		
Maßgebende Wassermenge	Q_{m}	144 m ³ /h
Schlammindex, Eindickzeit, Rücklaufverhältnis:		
Schlammindex, gewählt	ISV	105 l/kg
Eindickzeit des Schlammes, gewählt	tE	1,5 h
Schlammtrockensubstanz an der Beckensohle	TS _{BS}	10,9 kg/m ³
Gewähltes Verhältnis TS _{RS} /TS _{BS}		1,00 -
Schlammtrockensubstanz im Rücklaufschlamm	TS _{RS}	10,9 kg/m ³
Rücklaufverhältnis bei RW, gewählt	RV	0,75 -
Zulässige Schlammtrockensubstanz im Zulauf	TS _{ZN}	4,67 kg/m ³
Gewählte Schlammtrockensubstanz im Zulauf	TS _{ZN}	3,50 kg/m ³
Beckenoberfläche, Anzahl und Abmessungen:		
Zulässige Schlammvolumenbeschickung	qSV	650 l/(m ² *h)
Zulässige Flächenbeschickung	qΑ	2,00 m/h
Anzahl der Becken	а	1
Gewählter Durchmesser	D_{NB}	10,00 m
Durchmesser des Mittelbauwerks	D_{MB}	0,60 m
Durchmesser an der Sohle	Ds	0,60 m
Trichterneigung	×	1,70 -
Vorhandene Beckenoberfläche	A _{NB}	78 m ²
Wirksame Beckenoberfläche	A _{NB}	78 m ²
Vorhandene Schlammvolumenbeschickung	qSV	676 l/(m ² *h)
Vorhandene Flächenbeschickung	qΑ	1,84 m/h
Beckentiefe:		
Klarwasserzone	h ₁	0,51 m
Übergangs- und Pufferzone	h ₂₃	3,88 m
Eindick- und Räumzone	h ₄	6,44 m
Maßgebende Beckentiefe	h _{ges}	10,82 m
Senkr. Wandhöhe unter WSP	hs	2,83 m
Einlaufbauwerk:		
Tiefe des Einlaufs unter WSP	h _e	2,40 m
Volumen der Einlaufkammer	VE	0,7 m ³
Höhe des Einlaufschlitzes	hSE	1,00 m
Querschnittsfläche des Zulauf(düker)s	A_{ZD}	0,28 m ²
Eintrittsgeschwindigkeit in die Zulaufkammer	VZD	0,25 m/s
Aufenthaltszeit in der Zulaufkammer	t _{EB}	10 s
n die Zulaufkammer eingetragene Leistung	PE	2 Nm/s
Turbulente Scherbeanspruchung	G	49,2 1/s

Anlage 2 Überrechnung Prognose-Belastung

- 1-

DWA-Regelwerk

Belebungs-Expert Berechnung von einstufigen Belebungsanlagen nach dem DWA-Arbeitsblatt A131(2016)

Projekt: Wasserrecht KLA Irsee _PRO-Bemessung

bearbeitet von: MFRA berechnet am: 12.06.2025

Anlagenkonfiguration:

o Belebungsbecken

Nachklärung

Reinigungsziele:

- O Abbau des org. Kohlenstoffs
- o Nitrifikation
- o Denitrifikation
- o Phosphor-Simultanfällung

Denitrifikationsverfahren: intermittierende Denitrifikation

Fällmittel: zweiwertiges Eisen

Nachklärung: Beckentyp Trichterbecken, Strömung vertikal, Räumertyp RT!

Lastannahmen:

Größenklasse: 360 kg CSB/d

Berechnete Lastfälle:

- O Lastfall 1: Bemessung
- O Lastfall 2: Nachweis der Nitrifikation bei tiefster Temperatur
- O Lastfall 3: Ermittlung des Sauerstoffbedarfs bei höchster Temperatur
- O Lastfall 4: Sonderlastfall

	Lastfall	1	2	3	4
Zulaufmenge:					
Abwassermenge	Q _{d,Konz} .	480	480	480	480 m ³ /d
	Q_t	14	14	14	14 m ³ /h
Zulaufkonzentrationen:					
CSB	C _{CSB,ZB}	750	750	750	750 mg/l
Gelöster CSB	S _{SCSB,ZB}	260	260	260	260 mg/l
Abfiltrierbare Stoffe	X _{TS,ZB}	438	438	438	438 mg/l
Kjeldahl-Stickstoff	$C_{KN,ZB}$	68,8	68,8	68,8	68,8 mg/l
Ammoniumstickstoff	S _{NH4,ZB}	43,8	43,8	43,8	43,8 mg/l
Nitratstickstoff	S _{NO3,ZB}	0,0	0,0	0,0	0,0 mg/l
Phosphor	$C_{P,ZB}$	11,3	11,3	11,3	11,3 mg/l
Säurekapazität	S _{KS,ZB}	8,00	8,00	8,00	8,00 mmol/l
Zulauffrachten:					
CSB	$B_{d,CSB}$	360	360	360	360 kg/d
Gelöster CSB	B _{d,SCSB}	125	125	125	125 kg/d
Abfiltrierbare Stoffe	$B_{d,XTS}$	210	210	210	210 kg/d
Kjeldahl-Stickstoff	$B_{d,KN}$	33,0	33,0	33,0	33,0 kg/d
Ammoniumstickstoff	B _{d,NH4}	21,0	21,0	21,0	21,0 kg/d
Nitratstickstoff	B _{d,NO3}	0,0	0,0	0,0	0,0 kg/d
Phosphor	$B_{d,P}$	5,4	5,4	5,4	5,4 kg/d

123132_3000EW_PRO_rev2.gde

- 2-

	Т	12,0 Grad C
Temperatur im Belebungsbecken Stickstoffbilanz:	1.0	12,0 Grad C
Zulauf: C _{KN} + S _{NO3}	C _N	68,8 mg/l
im Schlamm gebunden	***************************************	8,0 mg/l
Ammonium im Ablauf	X _{orgN,BM}	0,0 mg/l
	S _{NH4,AN}	
organischer Stickstoff im Ablauf	S _{orgN,AN}	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3,N}	53,5 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3,AN}	10,8 mg/l
zu denitrifizierendes Nitrat	S _{NO3,D}	42,7 mg/l
Gewählter Denitrifikationsanteil	V _D /V _{BB}	0,41 -
vorhandene Denitrifikationskapazität	S _{NO3,D}	42,8 mg/l
denitrifiziertes Nitrat	S _{NO3,D}	42,8 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	10,7 mg/l
Maximale Taktzeit	t _T	13,04 h
Phosphorelimination:		
Phosphor im Zulauf	$C_{P,ZB}$	11,3 mg/l
Im Schlamm gebunden (normale Aufnahme)	$X_{P,BM}$	3,8 mg/l
Im Schlamm gebunden (erhöhte Aufnahme)	X _{P,BioP}	0,0 mg/l
Phosphor im Ablauf (vorhanden)	Sp04,AN	2,0 mg/l
Phosphor im Ablauf (Sollwert)	SpO4,AN	2,0 mg/l
gefällter Phosphor	X _{P,Fäll}	5,5 mg/l
Fällmittel: Zweiwertiges Eisen		
Fällmittelbedarf	FM	7,2 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TSAB	4,91 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TSAB	3,50 kg/m ³
Schlammalter und Belastungskennwerte:		
Erforderliches Schlammalter	erf.t _{TS}	16,0 d
Erforderliches Volumen	V _{BB}	899 m ³
Gewähltes Volumen	V _{BB}	935 m ³
Vorhandenes Schlammalter	t _{TS}	16,7 d
Vorhandenes aerobes Schlammalter	t _{TS,aer} .	9,9 d
Vorhandener Prozessfaktor	PF	2.16 -
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ÜS _{d,C}	177 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlamm aus biol. P-Elimination	ÜS _{d,BioP}	0 kg/d
Schlamm aus P-Fällung	ÜS _{d,F}	18 kg/d
	ÜS _d ,F	195 kg/d
Schlammproduktion gesamt Sauerstoffverbrauch:	USd	193 kg/u
	011	101 1-4
aus Kohlenstoffelimination	OV _{d,C}	191 kg/d
aus Nitrifikation	OV _{d,N}	110 kg/d
aus C-Elimination durch Denitrifikation	$OV_{d,D}$	-60 kg/d
Täglicher Sauerstoffverbrauch	OV _d	242 kg/d
Stoßfaktor für C-Elimination	fc	1,14 -

123132_3000EW_PRO_rev2.gde

- 3-

Maximaler stündl. Sauerstoffverbrauch OVh Säurekapazitäti 24,2 kg/h Säurekapazitätim Ablauf SKS _{AN} 3,75 mmol/l Belebungsbecken, Lastfall tiefste Temperatur: T 8,0 Grad C Stückstoffbilanz: T 8,0 Grad C Sückstoffbilanz: CN 68,8 mg/l Zulauf: Ckr, Y + ShO3 CN 68,8 mg/l im Schlamm gebunden XorgN,BM 9,9 mg/l Ammonium im Ablauf ShNHA,AN 0,0 mg/l organischer Stückstoff im Ablauf SorgN,AN 2,0 mg/l Gewählter Denitrifikationsanteil Vp/VgB 0,42 - vorhandene Denitrifikationsanteil Vp/VgB 0,42 - vorhandene Denitrifikationsanteil ShO3,D 41,5 mg/l denitrifiziertes Nitrat ShO3,D 41,5 mg/l Mitrat im Ablauf (vorhanden) ShO3,D 41,5 mg/l Phosphore im Zulauf Cp_ZB 11,3 mg/l	Stoßfaktor für Nitrifikation	f _N	1,91 -
Säurekapazitäti mi Ablauf SKSAN 3,75 mmol/l Belebungsbecken, Lastfall tiefste Temperatur: Temperatur im Belebungsbecken Zulauf: CKN + SNO3 CN 68,8 mg/l mi Schlamm gebunden XorgN,BM 9,9 mg/l Ammonium im Ablauf SNHA,AN 0,0 mg/l organischer Stickstoff im Ablauf SngN,AN 2,0 mg/l organischer Stickstoff im Ablauf SNO3,N 52,0 mg/l Gewählter Denitrifikationsanteil VpV/8B 0,42 - vorhandene Denitrifikationskapazität SNO3,D 41,5 mg/l denitrifiziertes Nitrat SNO3,D 41,5 mg/l Vorbandene Denitrifikationskapazität SNO3,D 41,5 mg/l Phosphorellmination: Vp.Bm/l No3,AN 10,5 mg/l Phosphorellmination: Phosphor im Zulauf Cp.ZB 11,3 mg/l Im Schlamm gebunden (normale Aufnahme) Xp.Bm 3,8 mg/l Im Schlamm gebunden (erribötte Aufnahme) Xp.Bm 3,8 mg/l Im Schlamm gebunden (erribötte Aufnahme) Xp.Bm 3,8 mg/l Phosphor im Ablauf (Sollwert) Spo4,AN 2,0 mg/l <td></td> <td></td> <td></td>			
Säurekapazität im Ablauf SKSAN 3,75 mmol/l Belebungsbecken, Lastfall tiefste Temperatur: Temperatur im Belebungsbecken T 8,0 Grad C Stickstoffbilanz: Zulauf: CKN + SNO3 CN 68,8 mg/l Image: Stickstoff im Ablauf SorgN,AN 2,0 mg/l organischer Stickstoff im Ablauf SorgN,AN 2,0 mg/l organischer Stickstoff im Ablauf SNO3,N 52,0 mg/l Gewählter Denitrifikationsanteil Vpl/VBB 0,42 - vorhandene Denitrifikationskapazität SNO3,D 41,5 mg/l denitrifiziertes Nitrat SNO3,D 41,5 mg/l vorhandene Denitrifikationskapazität SNO3,D 41,5 mg/l properation Denitrifikationskapazität SNO3,D 41,5 mg/l properation Denitrifikation Cp.ZB 11,3 mg/l properation im Ablauf State Denitrifikation		Ovh	24,2 kg/11
Belebungsbecken, Lastfall tiefste Temperatur: Temperatur im Belebungsbecken		eve	2.75 mmol/l
Temperatur im Belebungsbecken T 8,0 Grad C Stickstoffbilanz: Stickstoffbilanz: Zulauf: CKN + SNO3 CN 68,8 mg/l im Schlamm gebunden XorgN,BBM 9,9 mg/l Ammonium im Ablauf SNH4,AN 0,0 mg/l organischer Stickstoff im Ablauf SorgN,AN 2,0 mg/l dewählter Denitrifikationsanteil VpV/BB 0,42 - vorhandene Denitrifikationskapazität SNO3,D 41,5 mg/l denitrifiziertes Nitrat SNO3,D 41,5 mg/l Vittrat im Ablauf (vorhanden) SNO3,AN 10,5 mg/l Phosphore im Ablauf (vorhanden) NO3,AN 10,5 mg/l Phosphor im Zulauf CP,ZB 11,3 mg/l Im Schlamm gebunden (normale Aufnahme) XP,Biop 0,0 mg/l Phosphor im Ablauf (vorhanden) XP,Biop		SNOAN	3,73 1111101/1
Stickstoffbilanz: CN 68,8 mg/l Zulauf: CRM + SNO3 CN 68,8 mg/l im Schlamm gebunden XorgN,BM 9,9 mg/l Ammonium im Ablauf SNH4,AN 0,0 mg/l organischer Stickstoff im Ablauf SorgN,AN 2,0 mg/l dewählter Denitrifikationsateil VD/VBB 0,42 - vorhandene Denitrifikationskapazität SNO3,D 41,5 mg/l denitrifiziertes Nitrat SNO3,D 41,5 mg/l Mitrat im Ablauf (vorhanden) SNO3,AN 10,5 mg/l Phosphorelimination: Phosphorelimination: Phosphorelimination: VP,BB 3,8 mg/l Im Schlamm gebunden (normale Aufnahme) XP,BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,Biop 0,0 mg/l Phosphor im Ablauf (Vorhanden) SPO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l gefällter Phosphor XP,Fall 5,5 mg/l Fallmittlebedarf FM 7,2 kg Me/d <td< td=""><td>•</td><td>_</td><td>9.0 Crod C</td></td<>	•	_	9.0 Crod C
CN 68,8 mg/l ms chlamm gebunden XorgN,BM 9,9 mg/l Ammonium im Ablauf SnN4,AN 0,0 mg/l O,0 mg/l O,0 mg/l Organischer Stickstoff im Ablauf SnN4,AN 52,0 mg/l O,0 mg/l Organischer Stickstoff SNO3,N 52,0 mg/l Organischer Stickstoff SNO3,N 41,5 mg/l Organischer Stickstoff SNO3,N 52,0 mg/l Organischer Stickstoff Organischer Sticksto		'	o,u Grad C
im Schlamm gebunden XorgN,BM 9,9 mg/l Ammonium im Ablauf SNH4,AN 0,0 mg/l organischer Stickstoff im Ablauf SorgN,AN 2,0 mg/l Gewählter Denitrifikationsanteil Vp/VBB 0,42 - vorhandene Denitrifikationskapazität SN03,D 41,5 mg/l denitrifiziertes Nitrat SN03,D 41,5 mg/l vorhandene Denitrifikationskapazität SN03,D 41,5 mg/l vorhandene Nitration SN03,D 41,5 mg/l Vittat im Ablauf (vorhanden) SN03,D 10,5 mg/l Phosphor im Ablauf (vorhanden) XP,Bill 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,Bill 5,5 mg/l Phosphor im Ablauf (vorhanden) XP,Bill 5,5 mg/l Phosphor im Ablauf (vorhanden) XP,A,Bill 5,5 mg/l PF Sillmit		0	60 0 ma/l
Ammonium im Ablauf SNH4,AN 0,0 mg/l organischer Stückstoff im Ablauf SorgN,AN 2,0 mg/l dewählter Denitrifikationsanteil Vp/VBB 0,42 - vorhandene Denitrifikationskapazität SN03,D 41,5 mg/l denitrifiziertes Nitrat SN03,D 41,5 mg/l Nitrat im Ablauf (vorhanden) SN03,D 41,5 mg/l Phosphorelimination: Vp/SpB 3,8 mg/l Im Schlamm gebunden (normale Aufnahme) XP,BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BibP 0,0 mg/l Phosphor im Ablauf (vorhanden) SPO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l gefällter Phosphor XP,Fall 5,5 mg/l Fallmittel: Zweiwertiges Eisen FM 7,2 kg Me/d Fällmittel Zweiwertiges Eisen FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: ZUlässige Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter <td></td> <td></td> <td></td>			
organischer Stickstoff im Ablauf SorgN,AN 2,0 mg/l nitrifizierter Stickstoff SNO3,N 52,0 mg/l Gewählter Denitrifikationsanteil Vp/VBB 0,42 - vorhandene Denitrifikationskapazität SNO3,D 41,5 mg/l denitrifiziertes Nitrat SNO3,D 41,5 mg/l Nitrat im Ablauf (vorhanden) SNO3,AN 10,5 mg/l Phosphorelimination: CP_ZB 11,3 mg/l Im Schlamm gebunden (normale Aufnahme) XP_BM 3,8 mg/l Im Schlamm gebunden (refröhte Aufnahme) XP_BM 3,8 mg/l Im Schlamm gebunden (fröhte Aufnahme) XP_BM 0,0 mg/l Phosphor im Ablauf (vorhanden) SPO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Schlammtrockensu			
Seminar Semi			_
Gewählter Denitrifikationsanteil VD/VBB 0,42 - vorhandene Denitrifikationskapazität \$NO3,D 41,5 mg/l denitrifiziertes Nitrat \$NO3,D 41,5 mg/l Nitrat im Ablauf (vorhanden) \$NO3,AN 10,5 mg/l Phosphorelimination: Phosphorelimination: CP_ZB 11,3 mg/l Im Schlamm gebunden (normale Aufnahme) XP_BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP_BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP_BMP 0,0 mg/l Phosphor im Ablauf (Sollwert) \$PO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) \$PO4,AN 2,0 mg/l gefällter Phosphor XP_BIII 5,5 mg/l Fällmittel: Zweiwertiges Eisen FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: ZUlässige Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Schlammatter und Belastungskennwerte: Vorhandenes Schlammalter tTs 16,1 d Vorhandenes Schlammalter tTs 16,1 d Vorhandenes aerobes Schlammalter tTs 0,3 d <td></td> <td></td> <td>_</td>			_
vorhandene Denitrifikationskapazität SNO3,D 41,5 mg/l denitrifiziertes Nitrat SNO3,D 41,5 mg/l Nitrat im Ablauf (vorhanden) SNO3,AN 10,5 mg/l Phosphorelimination: Phosphore im Zulauf CP,ZB 11,3 mg/l Im Schlamm gebunden (normale Aufnahme) XP,BioP 0,0 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l Sellmitter (Sollwert) SpO4,AN 2,0 mg/l Schlammter TSAB 4,91 kg/m³ <td></td> <td></td> <td></td>			
Identififiziertes Nitrat SNO3,D 41,5 mg/l Nitrat im Ablauf (vorhanden) SNO3,AN 10,5 mg/l Phosphorelimination: Phosphore im Zulauf CP,ZB 11,3 mg/l Im Schlamm gebunden (normale Aufnahme) XP,BioP 0,0 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l Phosphor im Ablauf (vorhanden) SPO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l People,AN 2,0 mg/l PSP04,AN 3,50 kg/m PSP04			
Nitrat im Ablauf (vorhanden)	•	_	
Phosphorelimination: Phosphor im Zulauf CP_ZB 11,3 mg/l Im Schlamm gebunden (normale Aufnahme) XP_BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP_BioP 0,0 mg/l Phosphor im Ablauf (vorhanden) SPO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l gefällter Phosphor XP_Fall 5,5 mg/l Fällmittel: Zweiwertiges Eisen FM 7,2 kg Me/d Fällmittelbedarf FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: ZUlässige Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Schlammtter und Belastungskennwerte: Vorhandenes Schlammalter tTS 16,1 d Vorhandenes Schlammalter tTS 16,1 d Vorhandenes Schlammalter tTS,aer. 9,3 d Vorhandenes Prozessfaktor PF 1,38 - Schlamm aus Kohlenstoffelimination ÜSd,c 185 kg/d Schlamm aus Kohlenstoffelimination ÜSd,ext 0 kg/d O kg/d Schlamm aus P-Fällung ÜSd,ext 0 kg/d Schlammalter 181 kg/d <td></td> <td></td> <td>_</td>			_
Phosphor im Zulauf CP,ZB 11,3 mg/l Im Schlamm gebunden (normale Aufnahme) XP,BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l Phosphor im Ablauf (vorhanden) SPO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l gefällter Phosphor XP,Fäll 5,5 mg/l Fällmittel: Zweiwertiges Eisen FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: FM 7,2 kg Me/d Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Gewählte Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Ustable Schlammalter tTS 16,1 d Vorhandenes Schlammalter tTS 16,1 d 10,1 d Vorhandenes Berobes Schlammalter tTS 16,1 d 10,1 d Vorhandener Prozessfaktor PF 1,38 - 1,38 - Schlamm aus Kohlenstoffelimination ÜSd,C 185 kg/d 185 kg/d Schlamm aus P-Fällung ÜSd,E 18 kg/d 203 kg/d <	· · · · · · · · · · · · · · · · · · ·	S _{NO3,AN}	10,5 mg/l
Im Schlamm gebunden (normale Aufnahme) XP,BM 3,8 mg/l Im Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l Phosphor im Ablauf (vorhanden) SPO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l gefällter Phosphor XP,Fäll 5,5 mg/l Fällmittel: Zweiwertiges Eisen FM 7,2 kg Me/d Fällmittelbedarf FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: ZUlässige Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Gewählte Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter tTS 16,1 d Vorhandenes Schlammalter tTS,aer. 9,3 d 9,3 d Vorhandenes Prozessfaktor PF 1,38 - Schlamm aus Kohlenstoffelimination ÜSd,C 185 kg/d Schlamm aus externer C-Dosierung ÜSd,E 0 kg/d Schlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d Schlammproduktion gesamt ÜSd,E 18 kg/d Schlammproduktion gesamt <td>•</td> <td></td> <td></td>	•		
Im Schlamm gebunden (erhöhte Aufnahme) XP,BioP 0,0 mg/l Phosphor im Ablauf (vorhanden) SPO4,AN 2,0 mg/l Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l gefällter Phosphor XP,Fall 5,5 mg/l Fällmittel: Zweiwertiges Eisen FM 7,2 kg Me/d Fällmittelbedarf FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: TTSAB 3,50 kg/m³ Vorhandenes Schlammalter tTS, aer. 9,3 d Vorhandenes Aerobes Schlammalter tTS, aer. 9,3 d Vorhandener Prozessfaktor PF 1,38 - Schlamm aus Kohlenstoffelimination ÜSd,C 185 kg/d Schlamm aus kohlenstoffelimination ÜSd,ext 0 kg/d Schlamm aus P-Fällung ÜSd,Einer 18 kg/d Schlamm aus P-Fällung ÜSd,Einer 18 kg/d Schlammproduktion gesamt ÜSd, 203 kg/d Saue		. ,	_
Phosphor im Ablauf (vorhanden) Phosphor im Ablauf (Sollwert) Spod,AN P		X _{P,BM}	-
Phosphor im Ablauf (Sollwert) SPO4,AN 2,0 mg/l gefällter Phosphor XP,Fäll 5,5 mg/l Fällmittel: Zweiwertiges Eisen FM 7,2 kg Me/d Fällmittelbedarf FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: ZUlässige Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Gewählte Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter tTS 16,1 d Vorhandenes Schlammalter tTS,aer. 9,3 d Vorhandener Prozessfaktor PF 1,38 - Schlammproduktion: Schlamm aus Kohlenstoffelimination ÜSd,c 185 kg/d Schlamm aus externer C-Dosierung ÜSd,ext 0 kg/d Schlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d Schlamm aus P-Fällung ÜSd,E 18 kg/d Schlammproduktion gesamt ÜSd, 203 kg/d Sauerstoffverbrauch: aus Kohlenstoffelimination OVd,C 181 kg/d aus Kohlenstoffelimination OVd,D -58 kg/d aus C-Elimina	Im Schlamm gebunden (erhöhte Aufnahme)	$X_{P,BioP}$	0,0 mg/l
gefällter Phosphor Fällmittel: Zweiwertiges Eisen Fällmittelbedarf FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: Zulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Gewählte Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter Vorhandenes Schlammalter Vorhandenes aerobes Schlammalter Vorhandener Prozessfaktor FF 1,38 - Schlammproduktion: Schlamm aus Kohlenstoffelimination Schlamm aus externer C-Dosierung Schlamm aus biol. P-Elimination ÜSd,ext ÜSd,ext ÜSd,ext ÜSd,ext Schlamm produktion gesamt Schlamm o ÜSd,ext	Phosphor im Ablauf (vorhanden)	S _{PO4,AN}	2,0 mg/l
Fällmittel: Zweiwertiges Eisen FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: Zulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Zulässige Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Gewählte Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter tTS 16,1 d Vorhandenes Schlammalter tTS,aer. 9,3 d Vorhandener Prozessfaktor PF 1,38 - Schlammproduktion: Schlammproduktion: Schlamm aus Kohlenstoffelimination ÜSd,c 185 kg/d Schlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d Schlamm aus P-Fällung ÜSd,F 18 kg/d Schlammproduktion gesamt ÜSd 203 kg/d Sauerstoffverbrauch: USd,N 107 kg/d aus Kohlenstoffelimination OVd,N 107 kg/d aus Kohlenstoffelimination OVd,D -58 kg/d Täglicher Sauerstoffverbrauch OVd 230 kg/d Stoßfaktor für C-Elimination f	Phosphor im Ablauf (Sollwert)	S _{PO4,AN}	2,0 mg/l
Fällmittelbedarf FM 7,2 kg Me/d Schlammtrockensubstanz im Belebungsbecken: Zulässige Schlammtrockensubstanz im Ablauf BB TSAB 4,91 kg/m³ Gewählte Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter tTS 16,1 d Vorhandenes aerobes Schlammalter tTS,aer. 9,3 d Vorhandener Prozessfaktor PF 1,38 - Schlammproduktion: Schlamm aus Kohlenstoffelimination ÜSd,C 185 kg/d Schlamm aus externer C-Dosierung ÜSd,ext 0 kg/d Schlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d Schlamm aus P-Fällung ÜSd,F 18 kg/d Schlammproduktion gesamt ÜSd 203 kg/d Sauerstoffverbrauch: aus Kohlenstoffelimination OVd,C 181 kg/d aus Nitrifikation OVd,D -58 kg/d daus C-Elimination durch Denitrifikation OVd,D -58 kg/d Täglicher Sauerstoffverbrauch OVd 230 kg/d Stoßfaktor für C-Elimination f 1,14 -	gefällter Phosphor	X _{P,Fäll}	5,5 mg/l
Schlammtrockensubstanz im Belebungsbecken: Zulässige Schlammtrockensubstanz im Ablauf BB Gewählte Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter Vorhandenes aerobes Schlammalter Vorhandener Prozessfaktor FF 1,38 - Schlammproduktion: Schlamm aus Kohlenstoffelimination Schlamm aus externer C-Dosierung ÖSd,ext O kg/d Schlamm aus P-Fällung ÖSd,F 18 kg/d Schlamm aus P-Fällung ÖSd,F 18 kg/d Schlamm produktion gesamt ÖSd,F 18 kg/d Schlamm produktion gesamt ÖVSd,F 18 kg/d Schlamm aus P-Fällung ÖSd,F 18 kg/d Schlamm by ÖSd,F 18 kg/d Schlammproduktion gesamt ÖVSd,C Schlammproduktion GVd,C Schlamproduktion GVd,D Schlamprod	Fällmittel: Zweiwertiges Eisen		
Zulässige Schlammtrockensubstanz im Ablauf BB Gewählte Schlammtrockensubstanz im Ablauf BB TSAB 3,50 kg/m³ Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter Vorhandenes aerobes Schlammalter TTS 16,1 d Vorhandener Prozessfaktor PF 1,38 - Schlammproduktion: Schlamm aus Kohlenstoffelimination ÜSd,C 185 kg/d Schlamm aus externer C-Dosierung ÜSd,ext 0 kg/d Schlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d Schlamm aus P-Fällung ÜSd,F 18 kg/d Schlammproduktion gesamt ÜSd Schlammproduktion gesamt ÜSd Sauerstoffverbrauch: aus Kohlenstoffelimination OVd,C 181 kg/d aus Nitrifikation OVd,D -58 kg/d Täglicher Sauerstoffverbrauch Stoßfaktor für C-Elimination f N 1, 1,88 -	Fällmittelbedarf	FM	7,2 kg Me/d
Gewählte Schlammtrockensubstanz im Ablauf BB Schlammalter und Belastungskennwerte: Vorhandenes Schlammalter Vorhandenes Schlammalter Vorhandenes aerobes Schlammalter Vorhandener Prozessfaktor Schlammroduktion: Schlamm aus Kohlenstoffelimination Schlamm aus externer C-Dosierung Schlamm aus externer C-Dosierung Schlamm aus P-Fällung Schlamm aus P-Fällung Schlamm aus P-Fällung Schlamm böd, P-Elimination Schlamm böd, P-Fällung Schlammproduktion gesamt Schlammproduktion gesamt Schlammproduktion gesamt Sauerstoffverbrauch: aus Kohlenstoffelimination OVd,C 181 kg/d aus Nitrifikation OVd,D -58 kg/d Täglicher Sauerstoffverbrauch OVd 230 kg/d Stoßfaktor für C-Elimination f C 1,14 - Stoßfaktor für Nitrifikation	Schlammtrockensubstanz im Belebungsbecken:		
Schlammalter und Belastungskennwerte: tTS 16.1 d Vorhandenes Schlammalter tTS, aer. 9,3 d Vorhandener Prozessfaktor PF 1,38 - Schlammproduktion: Schlamm aus Kohlenstoffelimination ÜSd,C 185 kg/d Schlamm aus externer C-Dosierung ÜSd,ext 0 kg/d Schlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d Schlamm aus P-Fällung ÜSd,F 18 kg/d Schlammproduktion gesamt ÜSd 203 kg/d Sauerstoffverbrauch: 0Vd,C 181 kg/d aus Kohlenstoffelimination OVd,D -58 kg/d aus C-Elimination durch Denitrifikation OVd,D -58 kg/d Täglicher Sauerstoffverbrauch OVd 230 kg/d Stoßfaktor für C-Elimination fC 1,14 - Stoßfaktor für Nitrifikation fN 1,88 -	Zulässige Schlammtrockensubstanz im Ablauf BB		
Vorhandenes SchlammaltertTS16,1 dVorhandenes aerobes SchlammaltertTS,aer.9,3 dVorhandener ProzessfaktorPF1,38 -Schlammproduktion:Schlamm aus KohlenstoffeliminationÜSd,C185 kg/dSchlamm aus externer C-DosierungÜSd,ext0 kg/dSchlamm aus biol. P-EliminationÜSd,BioP0 kg/dSchlamm aus P-FällungÜSd,F18 kg/dSchlammproduktion gesamtÜSd203 kg/dSauerstoffverbrauch:aus KohlenstoffeliminationOVd,C181 kg/daus NitrifikationOVd,N107 kg/daus C-Elimination durch DenitrifikationOVd,D-58 kg/dTäglicher SauerstoffverbrauchOVd230 kg/dStoßfaktor für C-EliminationfC1,14 -Stoßfaktor für NitrifikationfN1,88 -	Gewählte Schlammtrockensubstanz im Ablauf BB	TS _{AB}	3,50 kg/m ³
Vorhandenes aerobes Schlammalter Vorhandener Prozessfaktor Schlammproduktion: Schlamm aus Kohlenstoffelimination Schlamm aus externer C-Dosierung Schlamm aus biol. P-Elimination Schlamm aus P-Fällung Schlamm aus P-Fällung Schlammproduktion gesamt Schlammproduktion gesamt Schlammproduktion gesamt Schlammproduktion gesamt Sauerstoffverbrauch: aus Kohlenstoffelimination OVd,C 181 kg/d aus Nitrifikation OVd,D -58 kg/d Täglicher Sauerstoffverbrauch Stoßfaktor für C-Elimination fc 1,14 - Stoßfaktor für Nitrifikation fn 1,38 -	Schlammalter und Belastungskennwerte:		
Vorhandener Prozessfaktor PF 1,38 - Schlammproduktion: Schlamm aus Kohlenstoffelimination ÜS _{d,C} 185 kg/d Schlamm aus externer C-Dosierung ÜS _{d,ext} 0 kg/d Schlamm aus biol. P-Elimination ÜS _{d,BioP} 0 kg/d Schlamm aus P-Fällung ÜS _{d,F} 18 kg/d Schlammproduktion gesamt ÜS _d 203 kg/d Sauerstoffverbrauch: US _d 203 kg/d Sauerstoffverbrauch: US _d 181 kg/d aus Kohlenstoffelimination OV _d ,C 181 kg/d aus Nitrifikation OV _d ,N 107 kg/d aus C-Elimination durch Denitrifikation OV _d ,D -58 kg/d Täglicher Sauerstoffverbrauch OV _d 230 kg/d Stoßfaktor für C-Elimination f _C 1,14 - Stoßfaktor für Nitrifikation f _N 1,88 -	Vorhandenes Schlammalter	t _{TS}	16,1 d
Schlammproduktion: Schlamm aus Kohlenstoffelimination ÜSd,C 185 kg/d Schlamm aus externer C-Dosierung ÜSd,ext 0 kg/d Schlamm aus biol. P-Elimination ÜSd,BioP 0 kg/d Schlamm aus P-Fällung ÜSd,F 18 kg/d Schlammproduktion gesamt ÜSd 203 kg/d Sauerstoffverbrauch: aus Kohlenstoffelimination OVd,C 181 kg/d aus Nitrifikation OVd,N 107 kg/d aus C-Elimination durch Denitrifikation OVd,D -58 kg/d Täglicher Sauerstoffverbrauch OVd 230 kg/d Stoßfaktor für C-Elimination fC 1,14 - Stoßfaktor für Nitrifikation fN 1,88 -	Vorhandenes aerobes Schlammalter	t _{TS,aer.}	9,3 d
Schlamm aus Kohlenstoffelimination ÜS _{d,C} 185 kg/d Schlamm aus externer C-Dosierung ÜS _{d,ext} 0 kg/d Schlamm aus biol. P-Elimination ÜS _{d,BioP} 0 kg/d Schlamm aus P-Fällung ÜS _{d,F} 18 kg/d Schlammproduktion gesamt ÜS _d 203 kg/d Sauerstoffverbrauch: aus Kohlenstoffelimination OV _{d,C} 181 kg/d aus Nitrifikation OV _{d,N} 107 kg/d aus C-Elimination durch Denitrifikation OV _{d,D} -58 kg/d Täglicher Sauerstoffverbrauch Stoßfaktor für C-Elimination f _C 1,14 - Stoßfaktor für Nitrifikation f _N 1,88 -	Vorhandener Prozessfaktor	PF	1,38 -
Schlamm aus externer C-Dosierung ÜS _{d,ext} ÜS _{d,BioP} 0 kg/d Schlamm aus biol. P-Elimination ÜS _{d,BioP} 0 kg/d Schlamm aus P-Fällung ÜS _{d,F} 18 kg/d Schlammproduktion gesamt ÜS _d 203 kg/d Sauerstoffverbrauch: US _{d,C} 181 kg/d aus Kohlenstoffelimination OV _{d,C} 181 kg/d aus Nitrifikation OV _{d,N} 107 kg/d aus C-Elimination durch Denitrifikation OV _{d,D} -58 kg/d Täglicher Sauerstoffverbrauch OV _d 230 kg/d Stoßfaktor für C-Elimination f _C 1,14 - Stoßfaktor für Nitrifikation f _N 1,88 -	Schlammproduktion:		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Schlamm aus Kohlenstoffelimination	ÜS _{d,C}	185 kg/d
Schlamm aus P-Fällung ÜS _{d,F} 18 kg/d Schlammproduktion gesamt ÜS _d 203 kg/d Sauerstoffverbrauch: aus Kohlenstoffelimination OV _{d,C} 181 kg/d aus Nitrifikation OV _{d,N} 107 kg/d aus C-Elimination durch Denitrifikation OV _{d,D} -58 kg/d Täglicher Sauerstoffverbrauch OV _d 230 kg/d Stoßfaktor für C-Elimination f _C 1,14 - Stoßfaktor für Nitrifikation f _N 1,88 -	Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlammproduktion gesamt ÜS _d 203 kg/d Sauerstoffverbrauch: aus Kohlenstoffelimination OV _{d,C} 181 kg/d aus Nitrifikation OV _{d,N} 107 kg/d aus C-Elimination durch Denitrifikation OV _{d,D} -58 kg/d Täglicher Sauerstoffverbrauch OV _d 230 kg/d Stoßfaktor für C-Elimination f _C 1,14 - Stoßfaktor für Nitrifikation f _N 1,88 -	Schlamm aus biol. P-Elimination	ÜS _{d,BioP}	0 kg/d
Sauerstoffverbrauch: aus Kohlenstoffelimination OV _{d,C} 181 kg/d aus Nitrifikation OV _{d,N} 107 kg/d aus C-Elimination durch Denitrifikation OV _{d,D} -58 kg/d Täglicher Sauerstoffverbrauch OV _d 230 kg/d Stoßfaktor für C-Elimination f _C 1,14 - Stoßfaktor für Nitrifikation f _N 1,88 -	Schlamm aus P-Fällung	ÜS _{d,F}	18 kg/d
aus Kohlenstoffelimination $OV_{d,C}$ 181 kg/d aus Nitrifikation $OV_{d,N}$ 107 kg/d aus C-Elimination durch Denitrifikation $OV_{d,D}$ -58 kg/d $OV_{d,D}$ 230 kg/d Stoßfaktor für C-Elimination $OV_{d,D}$ 5 fc 1,14 - Stoßfaktor für Nitrifikation $OV_{d,D}$ 1,88 -	Schlammproduktion gesamt	ÜS _d	203 kg/d
aus Nitrifikation $OV_{d,N}$ 107 kg/d aus C-Elimination durch Denitrifikation $OV_{d,D}$ -58 kg/d Täglicher Sauerstoffverbrauch OV_{d} 230 kg/d Stoßfaktor für C-Elimination f_{C} 1,14 - Stoßfaktor für Nitrifikation f_{N} 1,88 -	Sauerstoffverbrauch:		
aus C-Elimination durch Denitrifikation $OV_{d,D}$ -58 kg/d Täglicher Sauerstoffverbrauch OV_{d} 230 kg/d Stoßfaktor für C-Elimination f_{C} 1,14 - Stoßfaktor für Nitrifikation f_{N} 1,88 -	aus Kohlenstoffelimination	$OV_{d,C}$	181 kg/d
Täglicher Sauerstoffverbrauch OV_d 230 kg/d Stoßfaktor für C-Eliminationfc $1,14$ -Stoßfaktor für NitrifikationfN $1,88$ -	aus Nitrifikation	$OV_{d,N}$	107 kg/d
Stoßfaktor für C-EliminationfC1,14 -Stoßfaktor für Nitrifikation f_N 1,88 -	aus C-Elimination durch Denitrifikation	$OV_{d,D}$	-58 kg/d
Stoßfaktor für Nitrifikation f _N 1,88 -	Täglicher Sauerstoffverbrauch	OV_d	230 kg/d
Stoßfaktor für Nitrifikation f _N 1,88 -	Stoßfaktor für C-Elimination	fc	1,14 -
Maximalar etiindi. Sauaretoffvarbrauch	Stoßfaktor für Nitrifikation	f _N	1,88 -
waximaler sturiu. Sauerstonverbrauch Ovh 23,3 Kg/fi	Maximaler stündl. Sauerstoffverbrauch	OV_h	23,3 kg/h

123132_3000EW_PRO_rev2.gde

- 4 -

Säurekapazität:
Säurekapazität im Ablauf
SKS_{AN} 3,77 mmol/l

123132_3000EW_PRO_rev2.gde

- 5-

Temperatur im Belebungsbecken	Т	20,0 Grad C
Stickstoffbilanz:		
Zulauf: C _{KN} + S _{NO3}	C _N	68,8 mg/l
m Schlamm gebunden	$X_{orgN,BM}$	5,0 mg/l
Ammonium im Ablauf	S _{NH4.AN}	0,0 mg/l
organischer Stickstoff im Ablauf	S _{orgN,AN}	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3.N}	56,0 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3.AN}	10,8 mg/l
zu denitrifizierendes Nitrat	S _{NO3.D}	45,2 mg/l
Gewählter Denitrifikationsanteil	V _D /V _{BB}	0,40 -
vorhandene Denitrifikationskapazität	S _{NO3.D}	45,3 mg/l
denitrifiziertes Nitrat	S _{NO3.D}	45,3 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	10,6 mg/l
Maximale Taktzeit	t _T	12,34 h
Phosphorelimination:		
Phosphor im Zulauf	C _{P.ZB}	11,3 mg/l
m Schlamm gebunden (normale Aufnahme)	X _{P.BM}	3,8 mg/l
lm Schlamm gebunden (erhöhte Aufnahme)	X _{P,BioP}	0,0 mg/l
Phosphor im Ablauf (vorhanden)	S _{PO4.AN}	2,0 mg/l
Phosphor im Ablauf (Sollwert)	S _{PO4.AN}	2,0 mg/l
gefällter Phosphor	X _{P.Fäll}	5,5 mg/l
Fällmittel: Zweiwertiges Eisen	7, 4	
Fällmittelbedarf	FM	7,2 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TS _{AB}	4,91 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TS _{AB}	3,50 kg/m ³
Schlammalter und Belastungskennwerte:		
Vorhandenes Schlammalter	t _{TS}	17,9 d
Vorhandenes aerobes Schlammalter	t _{TS,aer.}	10,7 d
Vorhandener Prozessfaktor	PF	5,15 -
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ÜS _{d,C}	163 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlamm aus biol. P-Elimination	ÜS _{d,BioP}	0 kg/d
Schlamm aus P-Fällung	ÜS _{d,F}	18 kg/d
Schlammproduktion gesamt	ÜSd	181 kg/d
Sauerstoffverbrauch:		
aus Kohlenstoffelimination	$OV_{d,C}$	207 kg/d
aus Nitrifikation	$OV_{d,N}$	116 kg/d
aus C-Elimination durch Denitrifikation	$OV_{d,D}$	-63 kg/d
Täglicher Sauerstoffverbrauch	OVd	260 kg/d
Stoßfaktor für C-Elimination	fc	1,14 -
Stoßfaktor für Nitrifikation	fN	1,86 -
Maximaler stündl. Sauerstoffverbrauch	OVh	24,9 kg/h
Säurekapazität:		

123132_3000EW_PRO_rev2.gde

- 6-

Säurekapazität im Ablauf

SKSAN

3,76 mmol/l

123132_3000EW_PRO_rev2.gde

- 7-

Belebungsbecken, Sonderlastfall Prozess:	_	40.0.0
Temperatur im Belebungsbecken	Т	10,0 Grad C
Stickstoffbilanz:		
Zulauf: C _{KN} + S _{NO3}	C _N	68,8 mg/l
im Schlamm gebunden	X _{orgN,BM}	8,9 mg/l
Ammonium im Ablauf	S _{NH4,AN}	0,0 mg/l
organischer Stickstoff im Ablauf	$S_{orgN,AN}$	2,0 mg/l
nitrifizierter Stickstoff	S _{NO3,N}	52,8 mg/l
Nitrat im Ablauf (Sollwert)	S _{NO3,AN}	10,8 mg/l
zu denitrifizierendes Nitrat	S _{NO3,D}	42,0 mg/l
Gewählter Denitrifikationsanteil	V_D/V_{BB}	0,42 -
vorhandene Denitrifikationskapazität	S _{NO3,D}	42,7 mg/l
denitrifiziertes Nitrat	S _{NO3,D}	42,7 mg/l
Nitrat im Ablauf (vorhanden)	S _{NO3,AN}	10,1 mg/l
Maximale Taktzeit	t _T	12,43 h
Phosphorelimination:		
Phosphor im Zulauf	C _{P,ZB}	11,3 mg/l
lm Schlamm gebunden (normale Aufnahme)	$X_{P,BM}$	3,8 mg/l
lm Schlamm gebunden (erhöhte Aufnahme)	$X_{P,BioP}$	0,0 mg/l
Phosphor im Ablauf (vorhanden)	Spo4.AN	2,0 mg/l
Phosphor im Ablauf (Sollwert)	SPO4.AN	2,0 mg/l
gefällter Phosphor	X _{P.Fäll}	5,5 mg/l
Fällmittel: Zweiwertiges Eisen	. ,	
Fällmittelbedarf	FM	7,2 kg Me/d
Schlammtrockensubstanz im Belebungsbecken:		
Zulässige Schlammtrockensubstanz im Ablauf BB	TS _{AB}	4,91 kg/m ³
Gewählte Schlammtrockensubstanz im Ablauf BB	TSAB	3,50 kg/m ³
Schlammalter und Belastungskennwerte:		
Vorhandenes Schlammalter	t _{TS}	16,4 d
Vorhandenes aerobes Schlammalter	t _{TS,aer} .	9,5 d
Vorhandener Prozessfaktor	PF	1,71 -
Schlammproduktion:		
Schlamm aus Kohlenstoffelimination	ÜS _{d,C}	181 kg/d
Schlamm aus externer C-Dosierung	ÜS _{d,ext}	0 kg/d
Schlamm aus biol. P-Elimination	ÜS _{d,BioP}	0 kg/d
Schlamm aus P-Fällung	ÜS _{d,F}	18 kg/d
Schlammproduktion gesamt	ÜS _d	199 kg/d
Sauerstoffverbrauch:	330	. o o ngru
aus Kohlenstoffelimination	OV _{d,C}	186 kg/d
aus Nitrifikation	OV _{d,N}	100 kg/d 109 kg/d
aus C-Elimination durch Denitrifikation	OV _{d,N}	-59 kg/d
Täglicher Sauerstoffverbrauch	OV _{d,D}	-39 kg/d 236 kg/d
Taglicher Sauerstonverbrauch Stoßfaktor für C-Elimination	_	
	fc	1,14 -
	£	1 02
Stoßfaktor für C-Eifffilflation Stoßfaktor für Nitrifikation Maximaler stündl. Sauerstoffverbrauch	f _N OV _h	1,93 - 24,2 kg/h

123132_3000EW_PRO_rev2.gde

- 8 -

Säurekapazität im Ablauf

SKSAN

3,80 mmol/l

123132_3000EW_PRO_rev2.gde

- 9-

Nachklärung		
Beckentyp: Trichterbecken		
Art der Durchströmung: vertikal		
Maßgebende Wassermenge	Q_{m}	144 m ³ /h
Schlammindex, Eindickzeit, Rücklaufverhältnis:		
Schlammindex, gewählt	ISV	100 l/kg
Eindickzeit des Schlammes, gewählt	tE	1,5 h
Schlammtrockensubstanz an der Beckensohle	TS _{BS}	11,4 kg/m ³
Gewähltes Verhältnis TS _{RS} /TS _{BS}		1,00 -
Schlammtrockensubstanz im Rücklaufschlamm	TS _{RS}	11,4 kg/m ³
Rücklaufverhältnis bei RW, gewählt	RV	0,75 -
Zulässige Schlammtrockensubstanz im Zulauf	TSZN	4,91 kg/m ³
Gewählte Schlammtrockensubstanz im Zulauf	TSZN	3,50 kg/m ³
Beckenoberfläche, Anzahl und Abmessungen:		
Zulässige Schlammvolumenbeschickung	qSV	650 l/(m ² *h)
Zulässige Flächenbeschickung	qA	2,00 m/h
Anzahl der Becken	а	1
Gewählter Durchmesser	D _{NB}	10,00 m
Durchmesser des Mittelbauwerks	D_{MB}	0,60 m
Durchmesser an der Sohle	Ds	0,60 m
Trichterneigung	×	1,70 -
Vorhandene Beckenoberfläche	A _{NB}	78 m ²
Wirksame Beckenoberfläche	A _{NB}	78 m ²
Vorhandene Schlammvolumenbeschickung	qSV	644 l/(m ² *h)
Vorhandene Flächenbeschickung	qA	1,84 m/h
Beckentiefe:		
Klarwasserzone	h ₁	0,70 m
Übergangs- und Pufferzone	h ₂₃	3,79 m
Eindick- und Räumzone	h ₄	6,32 m
Maßgebende Beckentiefe	h _{qes}	10,82 m
Senkr. Wandhöhe unter WSP	hs	2,83 m
Einlaufbauwerk:		
Tiefe des Einlaufs unter WSP	he	2,60 m
Volumen der Einlaufkammer	VE	0,7 m ³
Höhe des Einlaufschlitzes	hSE	0,60 m
Querschnittsfläche des Zulauf(düker)s	AZD	0,28 m ²
Cintelttone a churin dialcolt in dia 7 de officement		0.05 /
Eintrittsgeschwindigkeit in die Zulaufkammer	VZD	0,25 m/s
Eintrittsgeschwindigkeit in die Zulaufkammer Aufenthaltszeit in der Zulaufkammer	VZD t _{EB}	0,25 m/s 10 s
Aufenthaltszeit in der Zulaufkammer	t _{EB}	10 s

123132_3000EW_PRO_rev2.gde

Anlage 3 Hydraulische Be	messung
--------------------------	---------

Amage 5	Trydraunsene Bemessung				
Bemessun	g in Anlehnung an DWA-A 198			IST	PLAN
Übersio	cht Belastung KLA				
Einwohr	ner Irsee			1.527	1.620
Kleinge	werbe			153	153
geplante	e Baugebiete				16
Reserve	9				123
Gewerb	e allgemein			1.088	1.088
SUMME	<u> </u>			2.768	3.000
A) Häuslic	hes Abwasser				
Einwohr	nerzahl inkl. Reserve	Е		1.680	1.759
Abwass	seranfall				
spezifiso	cher Anfall, häuslich	W _{S,d}	I/E*d	135	135
Schmut	tzwasser, häuslich				
spezifise	cher Abwasseranfall	W S,d,G	I/EGW*d	135	135
mittlerer	Abwasserabfluss	$Q_{h,aM} \\$	l/s	2,6	2,7
mittlerer	⁻ Tagesabwasserabfluss	$Q_{\text{h},\text{d}}$	m³/d	227	237
Divisor :	Spitzenabfluss	$X_{Qmax,H}$	h/d	8	8
Spitzena	abfluss, häusl. Abwasser	$Q_{\text{S},\text{max},\text{h}}$	l/s	8	8
Fremdv	vasser				
Anteil F	remdwasser		%	25%	25%
tägliche	r Fremdwasseranfall	Qf,d	m³/d	76	79
mittlerer	Fremdwasseranfall im Jahresmittel	Qf,aM	I/s	0,9	0,9
Schmut	tzwasserzufluss, Trockenwetter				
Trocken	wetterabfluss, im Jahresmittel	Qt,aM	l/s	3,5	3,7
Trocken	wetterabfluss, Spitze	Qt,x	l/s	8,7	9,2
tägliche	r Trockenwetterzufluss, im Jahresmittel	Qd	m³/d	302	317
Faktor C	Qd,85% / Qd,aM (angenommen)	f	-	1,750	1,750
tägliche	r Trockenwetterzufluss, 85%-Wert	Qd, 85%	m³/d	529	554
Mischw	rasser				
Faktor N	Mischwasser	fS,QM	-	9,00	9,00

Mischwasserzufluss einschl. Fremdwasser	Qm	l/s	24,50	25,65
---	----	-----	-------	-------

Zusammenfassung Bemessungswerte, häusl wasser	iches Ab-			
Trockenwetterabfluss, Jahresmittel	$Q_{t,aM} \\$	l/s	3,5	3,7
Trockenwetterabfluss, Spitze	$Q_{t,x} \\$	l/s	8,7	9,2
Mischwasserabfluss	\mathbf{Q}_{m}	l/s	24,5	25,7
Tagesschmutzwasserabfluss (Mittelwert)	Q_d	m³/d	302	317
Tagesschmutzwasserabfluss, 85%-Wert	Q_d	m³/d	529	554
Jahresschmutzwasserabfluss	Qa	m³/a	110.356	115.566

B)	Abwasseranfall, gewerblich				
	<u>Gewerbe</u>				
	Bemessungswert inkl. Reserve		EGW	1.241	1.241
	Gewerbliches Abwasser				
	spezifischer Abwasseranfall	W S,d,G	I/EGW*d	50,0	50,0
	mittlerer Abwasserabfluss	$Q_{g,aM}$	l/s	0,7	0,7
	mittlerer Tagesabwasserabfluss	$Q_{g,d}$	m³/d	62	62
	Betriebstage		d/a	250	250
	mittlerer betriebstäglicher Abwasserabfluss	$Q_{g,aM}$	l/s	1,0	1,0
	mittlerer betriebstäglicher Tagesabwasserabfluss	$Q_{g,d}$	m³/d	91	91
	Divisor Spitzenzulauf	f	h/d	12	12
	gewerblicher Abfluss, Spitze, Betriebstage	$Q_{g,x} \\$	l/s	2,1	2,1
	Fremdwasser				
	Anteil Fremdwasser		%	25%	25%
	täglicher Fremdwasseranfall	Qf,d	m³/d	21	21
	mittlerer Fremdwasseranfall im Jahresmittel	Qf,aM	l/s	0,2	0,2
	Schmutzwasserzufluss, Trockenwetter				
	Trockenwetterabfluss, im Jahresmittel	Qt,aM	l/s	1,0	1,0
	Trockenwetterabfluss, Betriebstage	Qt,aM	l/s	1,3	1,3
	Trockenwetterabfluss, Spitze	Qt,x	l/s	2,3	2,3
	täglicher Trockenwetterzufluss, im Jahresmittel	Qd	m³/d	83	83
	täglicher Trockenwetterzufluss, Betriebstage	Qd	m³/d	111	111
	Faktor Qd,85% / Qd,aM (angenommen)	f	-	1,750	1,750
	täglicher Trockenwetterzufluss, 85%-Wert	Qd,	m³/d	145	145

	85%			
Mischwasser				
Faktor Mischwasser	fS,QM	-	9,00	9,00
Mischwasserzufluss einschl. Fremdwasser	Qm	l/s	6,7	6,7
Zusammenfassung Bemessungswerte, Gewerbe				
Trockenwetterabfluss, Jahresmittel	$Q_{t,aM}$	l/s	1,0	1,0
Trockenwetterabfluss, Spitze (Betriebstage)	$Q_{t,x}$	l/s	2,3	2,3
Mischwasserabfluss	\mathbf{Q}_{m}	l/s	6,7	6,7
Tagesschmutzwasserabfluss (Mittelwert)	\mathbf{Q}_{d}	m³/d	83	83
Tagesschmutzwasserabfluss (Betriebstage)	Q_d	m³/d	111	111
Tagesschmutzwasserabfluss, 85%-Wert	Q_d	m³/d	145	145
Jahresschmutzwasserabfluss	Qa	m³/a	30.190	30.198

C) Bemessungswerte

Zusammenfassung Bemessungswerte, gesamt					
Trockenwetterabfluss, Jahresmittel	$Q_{t,aM} \\$	l/s	4,5	4,62	
Trockenwetterabfluss, Spitze (Betriebstage)	$\mathbf{Q}_{t,x}$	l/s	11,1	11,5	
Mischwasserabfluss, berechnet	Q_{m}	l/s	31,2	32,4	
Mischwasserabfluss, gewählt	\mathbf{Q}_{m}	l/s	40	40	
Tagesschmutzwasserabfluss (Mittelwert)	\mathbf{Q}_{d}	m³/d	385	399	
Tagesschmutzwasserabfluss (Betriebstage)					
=Q _{d,konz} .	\mathbf{Q}_{d}	m³/d	414	428	
Tagesschmutzwasserabfluss, 85%-Wert	\mathbf{Q}_{d}	m³/d	674	699	
Jahresschmutzwasserabfluss	Q_a	m³/a	140.547	145.764,0	

Anlage 4 E-Mail vom WWA Kempten vom 05.06.2025

Franze Michael

Von: Goldbach, Simon (WWA-KE) <Simon.Goldbach@wwa-ke.bayern.de>

Gesendet: Donnerstag, 5. Juni 2025 11:45

An: Franze Michael
Cc: Möggenried, Anna

Betreff: Anforderungswerte Kläranlage Irsee

Sehr geehrter Herr Franze,

Sie hatten mich telefonisch bezüglich der zukünftigen Einleitungswerte der KA Irsee angefragt. Bei Beibehaltung der Einleitungsstelle in den Irseer Bach sowie der Größenklasse der Kläranlage wären zukünftig folgende Ablaufwerte einzuhalten:

 $\begin{array}{llll} CSB: & 75 \text{ mg/l} \\ BSB_5: & 15 \text{ mg/l} \\ N_{ges}: & 18 \text{ mg/l} \\ NH4N-N: & 5 \text{ mg/l} \\ P_{ges}: & 2 \text{ mg/l} \\ AFS: & 20 \text{ mg/l} \\ \end{array}$

Zusätzlich ist zu beachten, dass der mittlere Niedrigwasserabfluss MNQ für den Irseer Bach an dieser Stelle entsprechend der aktuellen Berechnungen mit 12 I/s anzusetzen ist. Um das Mindestmischungsverhältnis nach LfU-Merkblatt 4.4/22 von 5 einhalten zu können, darf die Abwassereinleitung bei Trockenwetter $Q_{T,aM}$ im Mittel max. 3 I/s bzw. 10.8 m³/h betragen. Der Trockenwetterabfluss der Kläranlage in den Irseer Bach ist bisher wesentlich höher genehmigt, weshalb bauliche Maßnahmen erforderlich sein werden, um diesen Wert einhalten zu können.

Ich bitte diese Anforderungswerte bei der Erstellung der Antragsunterlagen, die bis Ende diesen Monats beim Landratsamt Ostallgäu einzureichen sind, zu berücksichtigen.

Bei wasserrechtlichen Fragen können Sie sich gerne an das Landratsamt Ostallgäu, Frau Möggenried, wenden (Tel. 08342 911-363, E-Mail: anna.möggenried@lra-oal.bayern.de).

Für fachliche Rückfragen stehe ich gerne zur Verfügung.

Mit freundlichen Grüßen

Simon Goldbach

Sachgebietsleiter Gewässerschutz Landkreis Ostallgäu und Stadt Kaufbeuren Industrieüberwachung Landkreis Ostallgäu und Stadt Kaufbeuren

Wasserwirtschaftsamt Kempten Rottachstrasse 15 87439 Kempten Telefon: 0831 / 52610 - 159

E-Mail: simon.goldbach@wwa-ke.bayern.de

Internet: www.wwa-ke.bayern.de